研究生: |
李孟懃 Lee, Meng-Chin |
---|---|
論文名稱: |
探討世界咖啡館融入社會性科學議題教學對高中生論證能力的培養 Infusing the World Café into a Socio-Scientific Issue Instruction to Foster Senior High School Students' Argumentation Competencies |
指導教授: |
劉湘瑤
Liu, Shiang-Yao |
口試委員: |
劉湘瑤
Liu, Shiang-Yao 許瑛玿 Hsu, Ying-Shao 林樹聲 Lin, Shu-Sheng |
口試日期: | 2024/07/19 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | 社會性科學議題 、世界咖啡館 、論證能力 |
英文關鍵詞: | Socio-Scientific Issues, World Café, Argumentation competencies |
研究方法: | 行動研究法 、 參與觀察法 、 言談分析 、 內容分析法 |
DOI URL: | http://doi.org/10.6345/NTNU202401430 |
論文種類: | 學術論文 |
相關次數: | 點閱:126 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於現今跨領域教學的研究蓬勃發展以及科技不斷進步所引起的社會問題,以及根據自身經驗,大眾時常透過社群媒體或新聞等單向獲取的方式來認識議題。在學校教學方面,議題討論的課程仍不普及,因此,本研究旨在探討具有雙向溝通且包容多元觀點的世界咖啡館活動融入社會性科學議題的教學策略,以培養學生的論證能力。並在課堂中教授能源議題的內容,設定能源議題的討論情境。本研究欲了解學生論證能力在教學前、後的表現,以及學生的論證能力與知識的關係。現今的教學理念強調「能力」的培養,而非單純的「知識」傳授,因此,除了能源議題外,本研究欲探討學生對能源和基因工程議題的論證能力,以及他們的推理論證模式是否因教學有所改變。並探討學生在世界咖啡館討論的推理面向與論證能力的關聯。
本研究採用混合研究法,以便利取樣方式選取台北市某高中一年級其中四個班級共116名學生作為研究對象。本研究以能源議題為主題進行3週共5節課的教學。教學開始前,測驗學生對能源議題及基因改造食品議題的論證能力,以及測驗學生對能源議題的認知程度;教學中,蒐集學生上課所使用的學習單及對話內容作為質性資料進行分析,其中三個班級學生經歷世界咖啡館的三回合討論,另一個班則是以影片欣賞的方式進行社會性科學議題的教學;教學結束後,再次測驗學生對能源議題及基因工程議題的論證能力。
研究統計顯示課堂上概念引介可能影響學生的論證能力,有參與概念引介者,在後測的論證成績有顯著上升。社會性科學議題教學在一定程度上能夠提升學生的論證能力,特別是當學生充分參與世界咖啡館討論中探討多面向、具啟發性的議題時,效果更加顯著。然而,議題設計與討論引導的品質對最終的學習效果具有重要影響。未參與概念引介的學生在後測中的表現有所下降,且他們在討論過程中易於出現冷漠態度,顯示出背景知識對有效論證的必要性。此外,議題的選擇和討論的豐富度也影響學生的推理能力和論證表現。未來的研究應進一步探索不同教學策略如何影響學生在各類議題上的論證能力,並探討如何在社會性科學議題教學中更有效地結合背景知識和批判性思維技能,以促進學生全面的科學素養發展。
This study aimed to infuse the World Café approach into socio-scientific issue (SSI) instruction to foster senior high school students’ argumentation competencies. The study aims to understand students' argumentation competencies before and after the teaching intervention. Additionally, current teaching emphasizes fostering "competencies" rather than merely transmitting "knowledge." Therefore, this study also aims to explore students' argumentation skills on other issues, such as genetic engineering, and investigate whether there have been changes in their reasoning modes and argumentation competencies. Furthermore, the study explores the relationship between the reasoning modes discussed by students in the World Café and their argumentation competencies.
The mixed-methods design is adopted in this study. A convenient sample of 116 grade 10 students from a high school in Taipei City participated in this study. The study conducts a three-week, five-hour teaching experiment on energy issues as the topic. Before the teaching, students' argumentation competencies of energy and GMO issues and their knowledge of energy were assessed. During the teaching sessions, three classes engaged in three rounds of the World Café discussions, where we gathered students' learning worksheets and recorded their group dialogues as qualitative data for analysis. In contrast, another class approached the SSI by watching a video related to the nuclear energy topic and subsequent whole-class discussions. After the teaching ended, the students' argumentation competencies on energy and genetic engineering issues were assessed again.
The results found that introducing energy-related facts and concepts in the first lesson may have influenced students' argumentation abilities, as participants showed significant improvement in post-test scores. It is evident that SSI teaching can enhance argumentation competencies, particularly when students engage in comprehensive conceptual phases and discuss multi-perspective topics in the World Café discussions. Students who did not participate in the conceptual introduction showed decreased post-test performance and indifferent attitudes during discussions, highlighting the necessity of background knowledge for effective argumentation. Additionally, topic selection and discussion richness influenced reasoning abilities and performance. Future research should explore how different teaching strategies affect argumentation skills across topics and investigate how to integrate background knowledge and critical thinking skills in SSI curricula to promote comprehensive scientific literacy development.
中文參考文獻
周維萱(2018)。以世界咖啡館討論模式提升大專學生公民參與態度及教學成效之研究。教育科學研究期刊,63(3),37-67。
周維萱、莊旻達(2013)。世界咖啡館研究架構初探─教學場域之實證性分析。通識教育學刊,11,37-66。
林采薇、靳知勤(2018)。國小學生在社會性科學議題教學中的認知與立場改變-以全球暖化議題為例。科學教育學刊,26(4),283-303。
林國明(2013)。多元的公民審議如何可能?—程序主義與公民社會觀點。臺灣民主季刊,10(4),137-183。
林樹聲(2004)。應用學習環策略進行科技引起的社會爭議議題之教學研究。行政院國家科學委員會補助專題研究計畫成果報告(計畫編號:NSC92-2511-S-415-003),未出版。
林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究–不同學業成就學生間之比較。科學教育學刊,17(2),111-133。
胡淑華(2012)。國中實施審議式教學學習成效之初探研究。中等教育,63(2),143-156。
國家教育研究院(2020)。議題融入說明手冊。
張文馨(2018)。探討高中生在社會性科學議題決策課程中非形式推理能力、小組協作調整行為與決策方法的關係(未出版之博士論文)。國立臺灣師範大學科學教育研究所,臺北市。
教育部(2018)。國民中小學暨普通型高級中等學校十二年國民基本教育課程綱要自然科學領域。臺北市:教育部。
傅惠筠(2008)。國立臺灣師範大學學生能源認知與能源態度之研究。﹝碩士論文。國立臺灣師範大學﹞。
黃茂在、陳文典(2004)。「問題解決」的能力。科學教育月刊,273,21-41。
董秀蘭(2006)。台灣北部三縣市八年級學生社會學習領域課堂討論經驗與影響因素之調查研究。公民訓育學報,18,65-89。
靳知勤(2008)。臺灣 STS 教育領域學位論文之發展回顧與評析。科學教育學刊,16(4),351-373。
靳知勤(2014)。臺灣所需優先解決的科學教育問題─科學教育與科學學者之觀點。教育學報,42(1),53-76。
靳知勤、吳靜宜(2017)。國小學童在社會性科學議題教學中的非形式推理改變:以不同條件下之能源決策為例。科學教育學刊,25(1),21-46。
劉宜青(2014)。加強國小學生發展與權衡判準之科學教學對其在社會性科學議題中做決定能力之影響(未出版之碩士論文)。國立嘉義大學數理教育研究所,嘉義市。"
羅加佳(2013)。以證據導向社會性科學議題教學促進國中學生評判證據與論證能力之研究(未出版之碩士論文)。國立嘉義大學數理教育研究所,嘉義市。
蘇衍丞、林樹聲(2012)。在社會性科學議題情境下應用鷹架教學提升國小六年級學生論證能力。科學教育學刊,20(4),343-366。
外文參考文獻
Abd-El-Khalick, F. (2003). Socioscientific issues in pre-college science classrooms. The role of moral reasoning on socioscientific issues and discourse in science education, 41-61.
Aldred, R. (2008). Ethical and political issues in contemporary research relationships. Sociology, 42(5), 887-903.
Aldred, R. (2011). From community participation to organizational therapy? World Cafe and Appreciative Inquiry as research methods. Community development journal, 46(1), 57-71.
Anisa, A., Widodo, A., Riandi, R., & Muslim, M. (2019, November). Genetics in socio scientific issues: measuring rebuttal abilities in scientific argumentation. In Journal of Physics: Conference Series (Vol. 1280, No. 3, p. 032002). IOP Publishing.
Baek, S., Shin, H., & Kim, C. J. (2022). Development of a Climate Change SSIBL-STEAM Program Aligned to the National Curriculum for SSI Elementary School in Korea. Asia-Pacific Science Education, 8(1), 109-148.
Baytelman, A., Iordanou, K., & Constantinou, C. P. (2020). Epistemic beliefs and prior knowledge as predictors of the construction of different types of arguments on socioscientific issues. Journal of Research in Science Teaching, 57(8), 1199-1227.
Binkley, R. (1995). Argumentation, education and reasoning. Informal Logic, 17(2), 127-143.
Brem, S. K., & Rips, L. J. (2000). Explanation and evidence in informal argument. Cognitive Science, 24(4), 573-604.
Brown, J., & Isaacs, D. (2005). The world café. San Francisco, CA: Berrett-Koehler Press.
Carson, L. (2011). Designing a public conversation using the world café method. Social Alternatives, 30(1), 10-14.
Chang, H., & Lee, H. (2010). College students' decision-making tendencies in the context of socioscientific issues (SSI). Journal of Korean Association in Science Education, 30(7), 887–900.
Chung, Y., Yoo, J., Kim, S. W., Lee, H., & Zeidler, D. L. (2016). Enhancing Students' Communication Skills in the Science Classroom through Socioscientific Issues. International Journal of Science and Mathematics Education, 14, 1-27.
Dalton, R. J. (2015). The good citizen: How a younger generation is reshaping American politics. CQ press.
Delaney, C., Daley, K., & Lajoie, D. (2006). Facilitating empowerment and stimulating scholarly dialogue using the World Café Model. Journal of Nursing Education, 45(1), 46.
Dewey, J. (2004). Democracy and education. Mineola, NY.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science education, 84(3), 287-312.
Eggert, S., & Bögeholz, S. (2010). Students' use of decision-making strategies with regard to socioscientific issues: An application of the Rasch partial credit model. Science Education, 94(2), 230-258."
Foong, C. C., & Daniel, E. G. (2013). Students’ argumentation skills across two socio-scientific issues in a confucian classroom: Is transfer possible?. International Journal of Science Education, 35(14), 2331-2355.
Grooms, J., Sampson, V., & Golden, B. (2014). Comparing the effectiveness of verification and inquiry laboratories in supporting undergraduate science students in constructing arguments around socioscientific issues. International Journal of Science Education, 36(9), 1412-1433.
Hong, Z. R., Lin, H. S., Wang, H. H., Chen, H. T., & Yang, K. K. (2013). Promoting and scaffolding elementary school students' attitudes toward science and argumentation through a science and society intervention. International Journal of Science Education, 35(10), 1625-1648.
Hoskins, B., Janmaat, J., & Villalba, E. (2011). Learning Citizenship through Social Practice Outside and Inside School:: Multilevel analysis of the learning of citizenship. British Education Research Journal, 55(1), 82-110.
Jho, H., Yoon, H. G., & Kim, M. (2014). The relationship of science knowledge, attitude and decision making on socio-scientific issues: The case study of students’ debates on a nuclear power plant in Korea. Science & Education, 23, 1131-1151.
Jiménez-Aleixandre, M. P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190.
Karpudewan, M., & Roth, W. M. (2018). Changes in primary students’ informal reasoning during an environment-related curriculum on socio-scientific issues. International Journal of Science and Mathematics Education, 16, 401-419.
Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67-100.
Khishfe, R. (2017). Consistency of nature of science views across scientific and socio-scientific contexts. International Journal of Science Education, 39(4), 403-432.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science education, 85(3), 291-310.Abd-El-Khalick, F. (2003). Socioscientific issues in pre-college science classrooms. The role of moral reasoning on socioscientific issues and discourse in science education, 41-61.
Kolstø, S. D. (2006). Patterns in students’ argumentation confronted with a risk‐focused socio‐scientific issue. International Journal of Science Education, 28(14), 1689-1716.
Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., ... & Ulvik, M. (2006). Science students' critical examination of scientific information related to socioscientific issues. Science Education, 90(4), 632-655.
Kuhn, D. (1991). The skill of argument. New York: Cambridge University Press.
Lawson, A. (2003). The nature and development of hypothetico‐predictive argumentation with implications for science teaching. International journal of science education, 25(11), 1387-1408.
Lawson, A. E. (2002). Sound and faulty arguments generated by preservice biology teachers when testing hypotheses involving unobservable entities. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 39(3), 237-252.
Lee, H., Lee, H., & Zeidler, D. L. (2020). Examining tensions in the socioscientific issues classroom: Students' border crossings into a new culture of science. Journal of Research in Science Teaching, 57(5), 672-694.
Levinson, M. (2012). The “Third C”: College, Career, and Citizenship. In D. E. Campbell, M. Levinson, & F. M. Hess (Eds.), Making civics count: Citizenship education for a new generation (pp. 247-258). Cambridge, MA: Harvard Education Press.
Lewis, J., & Leach, J. (2006). Discussion of socio‐scientific issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287.
Lindahl, M. G., Folkesson, A.-M., & Zeidler, D. L. (2019). Students' recognition of educational demands in the context of a socioscientific issues curriculum. Journal of Research in Science Teaching, 56(9), 1155-1182.
Lundegård, I., Arvanitis, L., Hamza, K., Schenk, L., Wojcik, A., & Haglund, K. (2022). Facts and values in students’ reasoning about gene technology in the frame of risk–a thick comprehension. Environmental Education Research, 28(9), 1283–1296.
Mason, L. (2001). Responses to anomalous data on controversial topics and theory change. Learning and Instruction, 11(6), 453-483.
Mason, L., & Scirica, F. (2006). Prediction of students' argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16(5), 492-509.
Moe, H. (2009). Online media participation and the transformation of the public sphere: Moving beyond the fragmentation debate. Milwaukee, WI. http://www. hm. uib. no/files/Moe_AoIR. pdf.
Nicolaidou, I., Kyza, E. A., Terzian, F., Hadjichambis, A., & Kafouris, D. (2011). A framework for scaffolding students' assessment of the credibility of evidence. Journal of Research in Science Teaching, 48(7), 711-744.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Petit, A., & Soto, E. (2002). Already experts: Showing students how much they know about writing and reading arguments. Journal of Adolescent & Adult Literacy, 45(8), 674-682.
Pouliot, C. (2009). Using the deficit model, public debate model and co-production of knowledge models to interpret points of view of students concerning citizens' participation in socioscientific issues. International Journal of Environmental and Science Education, 4(1), 49-73.
Prewitt, V. (2011). Working in the café: lessons in group dialogue. The Learning Organization, 18(3), 189-202.
Quinney, S., & Richardson, L. (2014). Organisational development, appreciative inquiry and the development of Psychologically Informed Environments (PIEs). Part I: a positive psychology approach. Housing, Care and Support, 17(2), 95-102.
Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 41(5), 513-536.
Sadler, T. D. (2006). Promoting discourse and argumentation in science teacher education. Journal of Science Teacher Education, 17(4), 323-346.
Sadler, T. D. (2009). Situated learning in science education: socio‐scientific issues as contexts for practice. Studies in Science Education, 45(1), 1-42.
Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463-1488.
Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: Construal and resolution of genetic engineering dilemmas. Science Education, 88(1), 4-27.
Sadler, T. D., & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93.
Schommer, M., & Hutter, R. (2002). Epistemological beliefs and thinking about everyday controversial issues. The Journal of Psychology, 136(1), 5-20.
Settlage, J., & Southerland, S.A. (2007). Teaching science to all children: Using culture as a starting point. New York: Routledge.
Sutter, A. M., Dauer, J. M., Kreuziger, T., Schubert, J., & Forbes, C. T. (2019). Sixth grade students’ problematization of and decision-making about a wind energy socio-scientific issue. International Research in Geographical and Environmental Education, 28(3), 242-256.
Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.
Travers, A. (2003). Parallel subaltern feminist counterpublics in cyberspace. Sociological Perspectives, 46(2), 223-237.
Tytler, R. (2001). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 23(8), 815-832.
Tytler, R., & Peterson, S. (2004). From “try it and see” to strategic exploration: Characterizing young children's scientific reasoning. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 41(1), 94-118.
Upshur, R. E. (2000). Seven characteristics of medical evidence. Journal of Evaluation in Clinical Practice, 6(2), 93-97.
Wessel, M. R. (1980). Science and conscience. New York, NY: Columbia University Press.
Whybrow, A. (2011). World café discussion. Coaching Psychologist, 7(1), 77-82.
Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio‐scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187.
Yang, F. Y., & Anderson, O. R. (2003). Senior high school students' preference and reasoning modes about nuclear energy use. International Journal of Science Education, 25(2), 221-244.
Yerrick, R. K. (2000). Lower track science students' argumentation and open inquiry instruction. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(8), 807-838.
Zeidler, D. L., & Nichols, B. H. (2009). Socioscientific issues: Theory and practice. Journal of Elementary Science Education, 21, 49-58.
Zeidler, D. L., Sadler, T. D., Applebaum, S., & Callahan, B. E. (2009). Advancing reflective judgment through socioscientific issues. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(1), 74-101.
Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A research‐based framework for socioscientific issues education. Science Education, 89(3), 357-377.