簡易檢索 / 詳目顯示

研究生: 關寶龍
Pou-Long Kuan
論文名稱: 萊氏擬烏賊胚胎在高溫緊迫下的氧化代謝研究
Study of oxidative metabolism in Sepioteuthis lessoniana embryos under hyperthermic environment
指導教授: 曾庸哲
Tseng, Yung-Che
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 49
中文關鍵詞: 萊氏擬烏賊氧化代謝高溫緊迫
英文關鍵詞: Sepioteuthis lessoniana, oxidative metabolism, hyperthermic environment
論文種類: 學術論文
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境溫度變異會促使變溫動物改變代謝機制,細胞內將因此產生過量的活性氧/氮化物(ROS/RNS)累積造成細胞毒害。本研究運用萊氏擬烏賊(Sepioteuthis lessoniana)胚胎探討高溫環境下頭足類動物的細胞代謝策略。根據胚胎耗氧與排氨實驗發現:頭足類胚胎在發育初期的整體代謝容易受到高溫環境影響而提升,故本實驗選擇早期胚胎(stage 25)進行高溫緊迫研究。在高溫緊迫下,細胞中ROS/RNS濃度沒有顯著變異,而抗氧化因子(CAT, SOD, HRP),抗逆境基因(HSP70, HSP90)與細胞色素c氧化酶(Cox I)的基因表現相均有上升趨勢。進一步發現低氧誘導因子(HIF-1)與鈉鉀幫浦(NKA)蛋白質表現量與高溫誘導的適應性能量轉移(adaptive metabolic shift)機制有關。因此我們推論:高溫緊迫下的萊氏擬烏賊胚胎可以藉由增加並調整呼吸代謝與氨基酸代謝的機制獲得能量,而細胞內亦會啟動有效的抗氧化機制抵禦ROS與RNS的累積。

    關鍵字:高溫緊迫、萊氏擬烏賊、氧化代謝

    Under temperature perturbations, metabolic strategies of ectothermic vertebrates would be modified and further increase the cellular reactive oxygen/nitrogen species (ROS/RNS) formations. Previous studies indicated that excess ROS/RNS accumulation would cause cytotoxicity. However in cephalopods, the cellular and physiological mechanisms behind metabolic adaptation under temperature perturbations is still an open question. In this study, we use squid (S. lessoniana) embryos as a cephalopod model to investigate the antioxidant mechanisms and further metabolic modifications under hyperthermic environment. According to oxygen consumption rate and ammonium excretion rate studies in squid embryos, 25-stage squid embryos were sensitive to ambient hyperthermic stress and further selected for following experiments. Under hyperthermic conditions, intracellular ROS/RNS contents were not obviously changed. Transcripts expressions of cytochrome c oxidase I (Cox I), anti-oxidation molecules (CAT, SOD, HRP) and stress-resistant genes (HSP70, HSP90) were up-regulated under hyperthermic stress. Moreover protein expressions of hypoxia-inducible factor 1-alpha (HIF-1) and Na+-K+-ATPase (NKA) are close related to cellular adaptive metabolic shift in hypothermic conditions. In conclusion, intact metabolic rate increment in squid embryos under hyperthermic stress would further induce adaptive metabolism shift for proper physiological functions and avoiding ROS/RNS accumulation.

    keywords:hyperthermic environment、Sepioteuthis lessoniana、oxidative metabolism

    中文摘要--------------------------------------------------ⅰ 英文摘要--------------------------------------------------ⅱ 目錄-------------------------------------------------------1 前言-------------------------------------------------------5 一、 人類活動與全球暖化的進程------------------------------5 二、 水生生物在高溫緊迫(hyperthermic stress)下的生理反應-------6 三、 變溫動物的生理與能量運用策略--------------------------8 1. 活性氧/氮與氧化壓力--------------------------------10 2. 環境壓力相關因子-----------------------------------11 3. 調節細胞平衡與代謝相關因子-------------------------13 四、 頭足類動物-萊氏擬烏賊--------------------------------13 五、 實驗目的---------------------------------------------14 材料與方法------------------------------------------------16 一、 實驗動物飼養-----------------------------------------16 1. 實驗動物飼養---------------------------------------16 2. 實驗動物的高溫處理---------------------------------16 二、 耗氧速率偵測-----------------------------------------17 三、 Total RNA 萃取----------------------------------------18 四、 反轉錄聚合酶反應(Reverse transcription reaction, RT)---------18 五、 即時定量反轉錄聚合酶連鎖反應 (Real-time quantitative polymerase chain reaction, RT-PCR)------------------------------------19 六、 西方墨點法(Western blotting)-------------------------------------------19 1. 蛋白質樣本製備--------------------------------------------------------19 2. 鈉鉀幫浦 (Na+/K+-ATPase, NKA)----------------------------------20 3. 缺氧誘導因子 (Hypoxia-inducible factor-1 alpha, HIF-1)---21 七、 活性氧/氮物質含量分析-------------------------------------------------22 八、 銨離子含量分析----------------------------------------------------------22 九、 統計分析-------------------------------------------------------------------23 結果-------------------------------------------------------------------------------24 一、 高溫緊迫下對萊氏擬烏賊秏氧速率與排放銨離子至水中的影響-------------------------------------------------------------------------------24 二、 高溫緊迫對萊氏擬烏賊活性氧/氮(ROS/RNS)的影響------------25 三、 高溫緊迫對萊氏擬烏賊抗氧化基因(SOD、CAT、HRP)的影響-------------------------------------------------------------------------------25 四、 高溫緊迫對萊氏擬烏賊抗逆境基因(HSP70、HSP90)的影響-------------------------------------------------------------------------------26 五、 高溫緊迫對萊氏擬烏賊電子傳遞鏈中細胞色素c氧化酶Ⅰ的影響----------------------------------------------------------------------------26 六、 高溫緊迫對萊氏擬烏賊卵鞘液中銨離子含量的差異------------27 七、 高溫緊迫對萊氏擬烏賊調控細胞平衡的NKA蛋白表現量的影響--------------------------------------------------------------------------------28 八、 高溫緊迫對萊氏擬烏賊細胞中容易受ROS影響的HIF-1蛋白表現量的影響----------------------------------------------------------------28 討論-------------------------------------------------------------------------------29 一、 寶驗用萊氏擬烏賊胚胎發育時間挑選-----------------------------29 二、 高温緊迫對萊氏擬烏賊氧化壓力與抗氧化壓力相關能力探討------------------------------------------------------------------------------30 三、 高温緊迫對萊氏擬烏賊氧化代謝機制相關探討------------------31 結論--------------------------------------------------------------------------------34 參考文獻--------------------------------------------------------------------------35 附表--------------------------------------------------------------------------------40 表一、即時定量聚合酶連鎖反應實驗所使用之引子序列--------------40 表二、耗氧速率實驗中樣本的基礎表徵測量------------------------------41 附圖--------------------------------------------------------------------------------42 圖一、高溫緊迫下對萊氏擬烏賊秏氧速率與排放銨離子至水中的影響--------------------------------------------------------------------------------------42 圖二、高溫緊迫對萊氏擬烏賊活性氧/氮(ROS/RNS)的影響------------43 圖三、高溫緊迫對萊氏擬烏賊抗氧化基因(SOD、CAT、HRP)的影響--------------------------------------------------------------------------------------44 圖四、高溫緊迫對萊氏擬烏賊抗逆境基因(HSP70、HSP90)的影響--------------------------------------------------------------------------------------45 圖五、高溫緊迫對萊氏擬烏賊卵鞘液中銨離子含量的差異----------46 圖六、高溫緊迫對萊氏擬烏賊電子傳遞鏈中細胞色素c氧化酶Ⅰ的影    響--------------------------------------------------------------------------47 圖七、高溫緊迫對萊氏擬烏賊調控細胞平衡的NKA蛋白表現量的影      響--------------------------------------------------------------------------48 圖八、高溫緊迫對萊氏擬烏賊細胞中容易受ROS影響的HIF-1蛋白    表現量的影響-----------------------------------------------------------49

    Abele, D., Brey, T., Philipp, E., 2009. Bivalve models of aging and the determination
      of molluscan lifespans. Experimental gerontology 44, 307-315.
    Abele, D., Burlando, B., Viarengo, A., Pörtner, H.-O., 1998. Exposure to elevated
      temperatures and hydrogen peroxide elicits oxidative stress and antioxidant
      response in the Antarctic intertidal limpet Nacella concinna. CBP 120, 425-435.
    Abele, D., Puntarulo, S., 2004. Formation of reactive species and induction of
      antioxidant defence systems in polar and temperate marine invertebrates and
      fish. CBP 138, 405-415.
    Benarroch, E.E., 2009. Hypoxia-induced mediators and neurologic disease. Neurology
      73, 560-565.
    Bittar, P.G., Charnay, Y., Pellerin, L., Bouras, C., Magistretti, P.J., 1996. Selective
      distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of
      human brain. Journal of Cerebral Blood Flow & Metabolism 16, 1079-1089.
    Blanco, G., Mercer, R.W., 1998. Isozymes of the Na-K-ATPase: heterogeneity in
      structure, diversity in function. American Journal of Physiology-Renal Physiology
      275, 633-650.
    Caldeira, K., Wickett, M.E., 2003. Oceanography: anthropogenic carbon and ocean
      pH. Nature 425, 365-365.
    Chavez, A., Miranda, L.F., Pichiule, P., Chavez, J.C., 2008. Mitochondria and Hypoxia‐
      induced Gene Expression Mediated by Hypoxia‐inducible Factors. Annals of the
      New York Academy of Sciences 1147, 312-320.
    Church, J.A., White, N.J., 2006. A 20th century acceleration in global sea‐level rise.
      Geophysical research letters 33.
    Cole, A.G., Hall, B.K., 2009. Cartilage differentiation in cephalopod molluscs. Zoology
      112, 2-15.
    Demple, B., Amábile-Cuevas, C.F., 1991. Redox redux: the control of oxidative stress
      responses. Cell 67, 837-839.
    Dienel, G.A., 2012. Fueling and imaging brain activation. ASN neuro 4, AN20120021.
      Eaton, J.G., Scheller, R.M., 1996. Effects of climate warming on fish thermal
      habitat in streams of the United States. Limnology and oceanography 41,
      1109-1115.
    Finkel, T., 1998. Oxygen radicals and signaling. Current opinion in cell biology 10,
      248-253.
    Fleury, C., Mignotte, B., Vayssière, J.-L., 2002. Mitochondrial reactive oxygen species
      in cell death signaling. Biochimie 84, 131-141.
    Frederich, M., Pörtner, H.O., 2000. Oxygen limitation of thermal tolerance defined by
      cardiac and ventilatory performance in spider crab, Maja squinado. American
      Journal of Physiology-Regulatory, Integrative and Comparative Physiology 279,
      R1531-R1538.
    Greenberg, J.T., Monach, P., Chou, J.H., Josephy, P.D., Demple, B., 1990. Positive
      control of a global antioxidant defense regulon activated by
      superoxide-generating agents in Escherichia coli. Proceedings of the National
      Academy of Sciences 87, 6181-6185.
    Guppy, M., Withers, P., 1999. Metabolic depression in animals: physiological
      perspectives and biochemical generalizations. Biological Reviews of the
      Cambridge Philosophical Society 74, 1-40.
    Harley, C.D., Randall Hughes, A., Hultgren, K.M., Miner, B.G., Sorte, C.J., Thornber,
      C.S., Rodriguez, L.F., Tomanek, L., Williams, S.L., 2006. The impacts of climate
      change in coastal marine systems. Ecology letters 9, 228-241.
    Hartl, F.U., 1996. Molecular chaperones in cellular protein folding. nature, 571-580.
    Hoeger, U., Mommsen, T.P., O'Dor, R., Webber, D., 1987. Oxygen uptake and
      nitrogen excretion in two cephalopods, octopus and squid. Comparative  
      Biochemistry and Physiology Part A: Physiology 87, 63-67.
    Houde, E.D., 1989. Comparative growth, mortality, and energetics of marine fish
      larvae: temperature and implied latitudinal effects. Fishery Bulletin 87, 471-495.
    Hughes, T.P., Baird, A.H., Bellwood, D.R., Card, M., Connolly, S.R., Folke, C., Grosberg,
      R., Hoegh-Guldberg, O., Jackson, J., Kleypas, J., 2003. Climate change, human
      impacts, and the resilience of coral reefs. science 301, 929-933.
    Ip, Y.K., Chew, S.F., 2010. Ammonia production, excretion, toxicity, and defense in
      fish: a review. Frontiers in physiology 1.
    Jorgensen, P.L., Håkansson, K.O., Karlish, S.J., 2003. Structure and mechanism of Na,
      K-ATPase: functional sites and their interactions. Annual review of physiology
      65, 817-849.
    Kérouel, R., Aminot, A., 1997. Fluorometric determination of ammonia in sea and
      estuarine waters by direct segmented flow analysis. Marine Chemistry 57,
      265-275.
    Kelly, P., Wigley, T., 1992. Solar cycle length, greenhouse forcing and global climate.
      nature 360, 328-330.
    Kieffer, J.D., Alsop, D., Wood, C.M., 1998. A respirometric analysis of fuel use during
      aerobic swimming at different temperatures in rainbow trout (Oncorhynchus
      mykiss). Journal of Experimental Biology 201, 3123-3133.
    Klige, P., 1990. Influence of global climatic processes on the hydrosphere regime,
      Greenhouse Effect, Sea Level and Drought. Springer, 165-181.
    Lee, P., 1995. Nutrition of cephalopods: fueling the system. Marine and Freshwater
      Behaviour and Physiology 25, 35-51.
    Lindquist, S., Craig, E., 1988. The heat-shock proteins. Annual review of genetics
      22, 631-677.
    Liu, Y., Fiskum, G., Schubert, D., 2002. Generation of reactive oxygen species by the
      mitochondrial electron transport chain. Journal of neurochemistry 80, 780-787.
    McWilliams, J.P., Côté, I.M., Gill, J.A., Sutherland, W.J., Watkinson, A.R., 2005.
      Accelerating impacts of temperature-induced coral bleaching in the Caribbean.
      Ecology 86, 2055-2060.
    Meehl GA, S.T., Collins WD, others (2007), 2007. Climate Change 2007: The Physical
      Science Basis Cambridge: Cambridge University Press. Global climate
      projections, 686–688.
    Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant
      science 7, 405-410.
    Nicholls, D.G., Ferguson, S., 2013. Bioenergetics. Academic Press.
    Pörtner, H.-O., 2012. Integrating climate-related stressor effects on marine
      organisms: unifying principles linking molecule to ecosystem-level changes. Mar
      Ecol Prog Ser 470, 273-290.
    Pörtner, H.O., Knust, R., 2007. Climate change affects marine fishes through the
      oxygen limitation of thermal tolerance. Science 315, 95-97.
    Pequeux, A., 1995. Osmotic regulation in crustaceans. Journal of Crustacean Biology,
      1-60.
    Pimentel, M.S., Trübenbach, K., Faleiro, F., Boavida-Portugal, J., Repolho, T., Rosa, R.,
      2012. Impact of ocean warming on the early ontogeny of cephalopods: a
      metabolic approach. Marine biology 159, 2051-2059.
    Portner, H., Bock, C., Reipschlager, A., 2000. Modulation of the cost of pHi regulation
      during metabolic depression: a (31) P-NMR study in invertebrate (Sipunculus
      nudus) isolated muscle. Journal of Experimental Biology 203, 2417-2428.
    Purdon, A., Rapoport, S., 1998. Energy requirements for two aspects of phospholipid
      metabolism in mammalian brain. Biochem. J 335, 313-318.
    Rahmstorf, S., 2003. Thermohaline circulation: The current climate. Nature
      421, 699-699.
    Randall, D., Tsui, T., 2002. Ammonia toxicity in fish. Marine pollution bulletin
      45, 17-23.
    Randall, D., Wilson, J., Peng, K., Kok, T., Kuah, S., Chew, S., Lam, T., Ip, Y., 1999. The
      mudskipper, Periophthalmodon schlosseri, actively transports against a
      concentration gradient. American Journal of Physiology-Regulatory, Integrative
      and Comparative Physiology 277, R1562-R1567.
    Rosa, R., Dierssen, H.M., Gonzalez, L., Seibel, B.A., 2008. Large-scale diversity
      patterns of cephalopods in the Atlantic open ocean and deep sea. Ecology 89,
      3449-3461.
    Rosa, R., Pimentel, M.S., Boavida-Portugal, J., Teixeira, T., Trübenbach, K., Diniz, M.,
      2012. Ocean warming enhances malformations, premature hatching, metabolic
      suppression and oxidative stress in the early life stages of a keystone squid. PloS
      one 7, e38282.
    Rutherford, S.L., Lindquist, S., 1998. Hsp90 as a capacitor for morphological 
      evolution. Nature 396, 336-342.
    Sardella, B.A., Cooper, J., Gonzalez, R.J., Brauner, C.J., 2004. The effect of
      temperature on juvenile Mozambique tilapia hybrids (Oreochromis
      mossambicus x O.urolepis hornorum) exposed to full-strength and hypersaline
      seawater. CBP 137, 621-629.
    Schmidt-Nielsen, K., 1997. Animal physiology: adaptation and environment.
      Cambridge University Press.
    Shapiro, B.M., 1991. The control of oxidant stress at fertilization. Science
      252, 533-536.
    Shindell, D.T., Schmidt, G.A., Miller, R.L., Rind, D., 2001. Northern Hemisphere winter
      climate response to greenhouse gas, ozone, solar, and volcanic forcing. Journal
      of Geophysical Research: Atmospheres (1984–2012) 106, 7193-7210.
    Smith, H.W., 1929. The excretion of ammonia and urea by the gills of fish. Journal of
      Biological Chemistry 81, 727-742.
    Solomon, S., 2007. Climate change 2007-the physical science basis: Working group I
      contribution to the fourth assessment report of the IPCC. Cambridge University
      Press.
    Stillman, J.H., 2002. Causes and consequences of thermal tolerance limits in rocky
      intertidal porcelain crabs, genus Petrolisthes. Integrative and Comparative
      Biology 42, 790-796.
    Stillman, J.H., Somero, G.N., 2000. A comparative analysis of the upper thermal
      tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences
      of latitude, vertical zonation, acclimation, and phylogeny. Physiological and
      Biochemical Zoology 73, 200-208.
    Storey, K.B., Storey, J.M., 1978. Energy metabolism in the mantle muscle of the
      squid, Loligo pealeii. Journal of comparative physiology 123, 169-175.
    Storey, K.B., Storey, J.M., 1983. Carbohydrate metabolism in cephalopod molluscs.
      Metabolic biochemistry and molecular biomechanics 1, 91-136.
    Taylor, C., 2008. Mitochondria and cellular oxygen sensing in the HIF pathway.
      Biochem. J 409, 19-26.
    Thannickal, V.J., Fanburg, B.L., 2000. Reactive oxygen species in cell signaling.
      American Journal of Physiology-Lung Cellular and Molecular Physiology 279,
      L1005-L1028.
    Tomanek, L., Somero, G.N., 1999. Evolutionary and acclimation-induced variation in
      the heat-shock responses of congeneric marine snails (genus Tegula) from
      different thermal habitats: implications for limits of thermotolerance and
      biogeography. Journal of Experimental Biology 202, 2925-2936.
    Tseng, Y.-C., Chen, R.-D., Lucassen, M., Schmidt, M.M., Dringen, R., Abele, D., Hwang,
      P.-P., 2011. Exploring uncoupling proteins and antioxidant mechanisms under
      acute cold exposure in brains of fish. PLoS One 6, e18180.
    Tseng, Y.-C., Hwang, P.-P., 2008. Some insights into energy metabolism for
      osmoregulation in fish. Comparative Biochemistry and Physiology Part C:
      Toxicology & Pharmacology 148, 419-429.
    Villanueva, R., Riba, J., Ruız-Capillas, C., González, A., Baeta, M., 2004. Amino acid
      composition of early stages of cephalopods and effect of amino acid dietary
      treatments on Octopus vulgaris paralarvae. Aquaculture 242, 455-478.
    Weis, V.M., 2008. Cellular mechanisms of Cnidarian bleaching: stress causes the
      collapse of symbiosis. Journal of Experimental Biology 211, 3059-3066.
    Wood, R., 1909. XXIV. Note on the Theory of the Greenhouse. The London,
      Edinburgh, and Dublin Philosophical Magazine and Journal of Science
      17, 319-320.
    Zektser, I., Loaiciga, H.A., 1993. Groundwater fluxes in the global hydrologic cycle:
      past, present and future. Journal of Hydrology 144, 405-427.
    Zhang, K., Douglas, B.C., Leatherman, S.P., 2004. Global warming and coastal erosion.
      Climatic Change 64, 41-58.
    施教民, 2013. 日本本年前3月魷類統計顯示漁獲量減少且平均單價上升. SQUID
      FISHERIES INFORMATION, 1-2.

    下載圖示
    QR CODE