簡易檢索 / 詳目顯示

研究生: 呂鳳琳
Lu, Feng-Lin
論文名稱: 可學習數學電子教科書之發展與效用:以數學素養教材為導向
指導教授: 左台益
Tso, Tai-Yih
學位類別: 博士
Doctor
系所名稱: 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 223
中文關鍵詞: 可學習數學教材數學素養導向數學電子教科書數學學習感受
DOI URL: http://doi.org/10.6345/DIS.NTNU.DM.001.2019.B01
論文種類: 學術論文
相關次數: 點閱:307下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在發展數學素養導向之可學習電子教科書,並透過實徵研究來瞭解此電子教科書對學生的數學學習成效與數學學習感受之影響。研究主要分成電子教科書原型實作與實徵研究兩階段進行。在第一階段,研究者從知識的結構脈絡與知識內容的呈現兩個面向來發展可學習的數學電子教科書原型。在第二階段主要是採取前實驗研究設計或準實驗研究設計來檢驗與瞭解電子教科書對學生的數學學習成效與數學學習感受之效果與影響。本研究結果顯示具動態探索操作的數學電子教科書可供學生進行自主學習,並進一步建構數學知識與發展數學素養之中介平台,以及作為十二年國教數學素養導向課程設計與教學評量之參考。

    第壹章 緒論 1 第一節 研究背景與研究動機 2 第二節 研究目的與研究問題 4 第貳章 理論基礎與文獻探討 5 第一節 數學素養的意涵與相關理論架構 5 第二節 數學物件的形成與展現 9 第三節 數學物件的認知困難 15 第四節 自主學習的意涵及相關理論與研究 18 第五節 數學素養導向可學習電子教科書之理論架構 20 第叁章 可學習數學電子教科書之設計與實作 27 第一節 電子教科書的發展與應用 27 第二節 可學習數學電子教科書組件之理論基礎 32 第三節 可學習數學素養導向電子教科書內容之設計構念 38 第四節 可學習數學電子教科書之原型實作及其特色 39 第肆章 研究方法 45 第一節 實驗一之研究方法 45 第二節 實驗二之研究方法 51 第三節 實驗三之研究方法 56 第四節 實驗四之研究方法 61 第伍章 研究結果與討論 67 第一節 實驗一:數學文本型態對學生學習函數概念之影響 67 第二節 實驗二:數學文本型態與教學策略對學習線型函數之影響 79 第三節 實驗三:電子教科書對學生自學線型函數應用問題之影響 85 第四節 實驗四:電子教科書之操弄形式對理解幾何證明之影響 93 第陸章 結論與建議 103 第一節 結論 103 第二節 建議 104 參考文獻 105 中文部分 105 英文部分 105 附件一 實驗一學習素材 111 附件二 實驗一後測 126 附件三 數學學習感受問卷 129 附件四 實驗二學習素材(探索版) 130 附件五 實驗二學習素材(範例版) 149 附件六 實驗二後測 178 附件七 實驗三學習素材 181 附件八 實驗三後測 196 附件九 實驗四學習素材 199 附件十 實驗四前測 212 附件十一 實驗四後測 218

    一、中文部分
    左台益(2011)。動態視覺化環境下解析幾何學習與教學研究。行政院國家科學委員會專題研究成果報告(編號:NSC 99-2511-S-003-022-),未出版。
    左台益(2012)。動態幾何系統的概念工具。中等教育,63(4),6-15。
    左台益(2014)。數學數位學習工具:動態幾何微世界。左台益、吳昭容(主編)。數學數位學習(頁229-258)。臺北市:高等教育。
    李國偉(2013)。教育部提升國民素養專案計畫報告書。臺北:教育部提升國民素養專案辦公室。
    林福來(2015)。主動思考:貼近數學的心跳。臺北:開學文化。
    周慧儀(2015)。自主學習的三大成功因素。教師中心傳真,90,2-3。
    教育部(2014)。十二年國民基本教育課程綱要總綱。臺北:作者。
    臺灣 PISA 國家研究中心(2014)。臺灣 PISA2012 精簡報告。臺灣 PISA 國家研究中心專題研究報告。取自 http://pisa.nutn.edu.tw/dl_result_report.htm
    論壇:適性教學的教科書編輯。教科書研究,8(1),135-169。

    二、英文部分
    Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183-198.
    Bell, L., Juersivich, N., Hammond, T. C., & Bell, R. L. (2012). The TPACK of dynamic representations. In R. Ronau, C. Rakes, & M. Niess (Eds.) Educational Technology, Teacher Knowledge, and Classroom Impact: A Research Handbook on Frameworks and Approaches (pp. 103-135). Hershey, PA. doi:10.4018/978-1-60960-750-0.ch005
    Bloor, D. (1983). Wittgenstein. A social theory of knowledge. London, UK: The Macmillan Press.
    Boekaerts, M. (2010). Motivation and self-regulation: Two close friends. In Urdan T.C., Karabenick S.A. (Eds.) The decade ahead: Applications and contexts of motivation and achievement. Bingley, UK: Emerald. 69-108.
    Boekaerts, M., & Corno, L. (2005). Self-regulation in the classroom: A perspective on assessment and intervention. Applied Psychology: An International Review, 54, 199-231.
    Chevallard, Y. (1992). Concepts fondamentaux de la didactique: pPerspectives apportées par une approache anthropologique. Recherches en Didactique des Mathématiques, 12(1), 73-112.
    Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 95-126). Dordrecht: Kluwer.
    Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103-131.
    Efklides, A. (2011). Interactions of metacognition with motivation and affect in self-regulated learning: The MASRL model. Educational Psychologist, 46(1), 6-25. doi:10.1080/00461520.2011.538645
    Ernest, P. (1998). Social constructivism as a philosophy of mathematics. New York, NY: SUNY.
    Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education, development status and directions. ZDM - The International Journal on Mathematics Education, 45, 633-646.
    Federal Communications Commission. (2012). Digital textbook playbook : The digital textbook collaborative. Retrieved from http://www.fcc.gov/encyclopedia/digital-textbook-playbook
    Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139-162.
    Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. Resnick, (Ed.), The nature of intelligence (pp. 231-235). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Freudenthal, H. (1978). Weeding and sowing: Preface to a science of mathematical education. Springer.
    Font, V., Malaspina, U., Giménez, J., & Wilhelmi, M. R. (2011). Mathematical objects through the lens of three different theoretical perspectives. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of CERME7 (pp. 2411-2420). Rzeszow, Poland: ERME.
    Godino, J. D., Batanero, C. & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM - The International Journal on Mathematics Education, 39(1-2), 127-135.
    Gould, P. (2011). Electronic mathematics textbooks: Old wine in new skins? Paper presented at APEC-Tsukuba International Conference V (Tsukuba Session), Japan. http://www.criced.tsukuba.ac.jp/math/apec/apec2011/19-20/02_PeterGould-paper.pdf
    Gray, E. M. & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 25(2), 115-141.
    Høyrup, J. (2002). Lengths, widths, surfaces: A portrait of old Babylonian algebra and its kin. New York, NY: Springer.
    Kaput, J. & Schorr, R. (2002). Changing representational infrastructures changes most everything: The case of SimCalc, algebra, and calculus. Research on the impact of Technology on the Teaching and Learning of Mathematics (pp. 47-75). Heid, K. & Blume, G. Manwah, NJ, Erlbaum Associates.
    Kilpatrick, J. (2014). From clay tablet to computer tablet: The evolution of school mathematics textbooks. In K. Jones, C. Bokhove, G. Howson, & L. Fab (Eds.), Proceedings of the International Conference on Mathematics Textbooks Research and Development (pp. 3-12). Southampton: Southampton Education School, University of Southampton.
    Kim, J,. & Jung, H. (2010). South Korean digital textbook project, Computers in the Schools, 27(3), 247-265.
    Knowles, M. (1975). Self-directed learning. Chicago: Follett Publishing Company.
    Lin, F. L. & Tsao, L, C. (1999). Exam math re-examined. In C. Hoyles, C. Morgan & G. Woodhouse (Eds.), Rethinking mathematics curriculum (pp. 228-239). London: Falmer Press.
    Lord, R. G., Diefendorff, J. M., Schmidt, A. M., & Hall, R. J. (2010). Self-regulation at work. Annual Review of Psychology, 61(1), 543-568. doi:10.1146/annurev.psych.093008.100314
    Mayer, R.E. (2001). Multimedia learning. London: Cambridge University Press.
    Mok, M. M. C. (Ed.). (2013). Self-directed learning oriented assessments in the Asia-Pacific. Dordrecht, Netherlands: Springer.
    Moreno, L. M., Hegedus, S. J., & Kaput, J. J. (2008) From static to dynamic mathematics: historical and representational perspectives. Educational Studies in Mathematics, 68(2), Springer, 99-111.
    Mullis, I.V.S., Martin, M.O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
    OECD (2016), PISA 2015 Results (Volume I): Excellence and Equity in Education, PISA, OECD Publishing, Paris. doi:10.1787/9789264266490-en
    OECD (2017), PISA 2015 Assessment and Analytical Framework: Science, Reading, Mathematic, Financial Literacy and Collaborative Problem Solving, revised edition, PISA, OECD Publishing, Paris. doi:10.1787/9789264281820-en
    Onderdonk, J., Allen, D., & Allen, D. (2009). Technology and learning: Reimagining the textbook. The Journal of Continuing Higher Education, 57, 120-140.
    Otte, M. (2006). Mathematical epistemology from a Peircean semiotic point of view. Educational Studies in Mathematics, 61, 11-38.
    Oyanagi, W. (2011). A primitive investigation on utilization of electronic textbook. The Annals of Center for Educational Research and Development Nara University of Education, 20, 205-208.
    Presmeg, N. (1998). A semiotic analysis of students‘ own cultural mathematics. In A. Olivier, & K. Newstead (Eds.), Proceedings of the twenty-second annual conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 136-151). Stellenbosch, South Africa: University of Stellenbosch.
    Radford, L. (2006). The anthropology of meaning. Educational Studies in Mathematics, 61, 39-65.
    Rohr, M., & Reimann, P. (1998). Reasoning with multiple representations when acquiring the particulate model of matter. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen and T. de Jong (Eds.), Learning with Multiple Representations (pp. 41-66). New York: Pergamon.
    Schunk, D. H. & Greene, J. A. (2018). Historical, contemporary, and future perspectives on self-regulated learning and performance. In D. H. Schunk & J. A. Greene (Eds.). Handbook of Self-Regulation of Learning and Performance (2nd Ed.) (pp. 1-15). New York, NY: Routledge.
    Schunk, D. H., & Zimmerman, B. J. (2008). Motivation and Self-Regulated Learning: Theory, Research, and Applications. New York: Taylor & Francis Group, LLC.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
    Sfard, A. (2000). Symbolizing mathematical reality into being – or how mathematical discourse and mathematical objects create each other. In P. Cobb, E. Yackel, & K. McClain (Eds.), Symbolizing and Ccommunicating in Mmathematics Cclassrooms (pp. 38-75). London, UK: Lawrence Erlbaum.
    Sfard A. (2014) Reflections on Mathematical Literacy. In: Fried M., Dreyfus T. (eds) Mathematics & Mathematics Education: Searching for Common Ground. Advances in Mathematics Education. Springer, Dordrecht.
    Shaffer, D. W., & Kaput, J. J. (1999). Mathematics and virtual culture: An evolutionary perspective on technology and mathematics. Educational Studies in Mathematics, 37, 97-119.
    Shimizu, Y., Koizumi, R., & Horita, T. (2010). Current conditions of electronic textbook for students and issues to be considered in Japan. Research Report of JSET Conferences, 10(4), 29-36.
    Sitzmann, T., & Ely, K. (2011). A meta-analysis of self-regulated learning in work-related training and educational attainment: What we know and where we need to go. Psychological Bulletin, 137(3), 421-442. doi:10.1037/a0022777
    Staecy, K., & Turner, R. (2015). The evolution and key concepts of the PISA mathematics framework. In K. Staecy & R. Turner (Eds.), Assessing mathematical literacy (pp. 5-33). New York, NY: Springer.
    Tall, D. O. (2007). Embodiment, Symbolism and Formalism in Undergraduate Mathematics Education, Plenary at 10th Conference of the Special Interest Group of the Mathematical Association of America on Research in Undergraduate Mathematics Education, Feb 22-27, 2007, San Diego, California, USA.
    Tall, D. O. (2004), The three worlds of mathematics. For the Learning of Mathematics, 23(3), 29-33.
    Victori, M., & Lockhart, W. (1995). Enhancing metacognition in self-directed language learning. System, 23(2), 223-234.
    Winne, P.H. (1995). Inherent details in self-regulated learning. Educational Psychologist, 30, 173-187.
    Yore, L. D., Pimm, D., & Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5(4), 559-589.
    Zazkis, R., Dubinsky, E. and Dautermann, J. (1996). Coordinating visual and analytic strategies: a study of students’ understanding of the group D4. Journal for Research in Mathematics Education. 27(4), 435-457.
    Zimmerman, B. J. (2001). Theories of self-regulated learning and academic achievement: an overview and analysis. In B. J. Zimmerman, & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: theoretical perspectives (2nd ed.) (pp. 1-38). Mahwah, NJ: Erlbaum.

    下載圖示
    QR CODE