簡易檢索 / 詳目顯示

研究生: 余謙
Yu, Chien
論文名稱: 不同強度的羽球動作運動量與肢段運動量的相關性
The Correlation between Different Intensities of Exercise and Limb Movements in Badminton Exercise
指導教授: 相子元
Shiang, Tzyy-Yuang
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 40
中文關鍵詞: 心率加速規量化運動量
英文關鍵詞: Heart rate, accelerometer, monitoring training
DOI URL: https://doi.org/10.6345/NTNU202204523
論文種類: 學術論文
相關次數: 點閱:146下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言: 運動表現的提升需要藉由適當的訓練強度及運動量,若是沒有控制好運動量,容易造成選手過度訓練甚至受傷。近年來漸漸藉由科學儀器監控訓練過程,監控訓練可以給予運動表現變化提供一個科學的解釋,重要的是監控訓練能幫助訓練人員掌控選手的訓練負荷及減少受傷風險、疾病。國內羽球項目的成績表現日益提升,但也因為龐大訓練量導致許多選手身體帶傷訓練、比賽,而加速規是目前最方便且便宜的量測儀器之一,重要的是能夠客觀的提供動作的資訊,但是量測準確度會受到擺放位置而影響,因此越來越多研究探討加速規擺放位置,以及是否能利用加速規推估運動時的運動量並監控訓練減少傷害風險。目的: 比較四肢與軀幹運動時不同加速規訊號演算法推估的運動量,與心率換算出的運動量之間的相關性。方法:招募12名大專男子羽球選手進行實驗,進行四種不同強度的羽球訓練動作,同時量測心率、四肢及軀幹運動時的加速度。將心率帶入Banister’s TRIMP (Training impulse) 公式計算運動量,加速規訊號轉換成MAD (mean amplitude deviation) , Player Load與MPD (mean power deviation) 數值,並比較之間的相關性。結果:在運動開始後的第三分鐘,MAD, Player Load與MPD演算法與TRIMP算出的運動量在慣用手達中度相關,非慣用手、雙腳及腰椎達高度相關。結論:加速規訊號以MAD, Player Load與MPD演算法推估動作運動量是可行的,除了慣用手以外其餘部位皆適合擺放加速規,未來可將本研究應用於選手量化運動量上。

    Introduction: Raising athletic performance required appropriate exercise and training, but overtraining could cause injury. Monitoring training can help coach to control athlete’s training program and reduce the risk of injury. Heart rate was commonly used to monitor training in the past. Accelerometer is one of the most convenient instruments substitute heart rate currently. However, the position to attach accelerometer will affect the signal collection and further affect the accuracy. Purpose: The purpose of this study is to examine: The correlation of different algorithms for limbs and trunk accelerometer signals and heart rate signals in badminton movement. Method: This study recruited 12 male badminton athletes who were asked to wear a heart rate monitor and 5 tri-axial accelerometers to perform 4 different badminton movement. Result: In the third minute after the start of movement, MAD, Player Load and MPD algorithms have moderate to high correlation with TRIMP value in all accelerometer positions. Conclusion: It’s feasible to quantify the amount of exercise using MAD, Player Load and MPD algorithms. The results of this study could be applied to quantify the amount of training in badminton.

    中文摘要......................................................................................................................i 英文摘要.....................................................................................................................ii 謝誌............................................................................................................................iii 目次............................................................................................................................v 圖次...........................................................................................................................vii 表次..........................................................................................................................viii 第壹章 緒論..........................................................................................1 第一節 前言.............................................................................................1 第二節 問題背景.............................................................................................3 第三節 研究目的.............................................................................................3 第四節 研究假設.............................................................................................3 第五節 研究範圍與限制…........................................................................4 第六節 名詞操作定義.....................................................................................4 第七節 研究之重要性.....................................................................................4 第貳章 文獻探討..................................................................................5 第一節 運動量計算方式................................................................................5 第二節 以加速規量測日常身體活動.........................................................6 第三節 加速規量化運動訓練量與生理指標的比較...................................7 第四節 加速規量化運動量在訓練中的應用...............................................9 第五節 文獻總結….......................................................................................11 第參章 實驗方法................................................................................12 第一節 研究對象...........................................................................................12 第二節 測量儀器與設備...............................................................................12 第三節 實驗步驟...........................................................................................13 第四節 實驗流程...........................................................................................15 第五節 資料收集與分析...............................................................................15 第六節 統計方法...........................................................................................16 第肆章 結果........................................................................................17 第伍章 討論........................................................................................26 第一節 運動時間長短影響心率加速規訊號的相關性...............................26 第二節 不同演算法對加速規訊號與心率訊號相關性之比較...................27 第三節 不同部位對加速規訊號與心率訊號相關性之比較.......................29 第四節 結論與建議...............................................................................30 引用文獻................................................................................................31 附錄一 實驗受試者須知.......................................................................................38 附錄二 實驗受試者同意書...................................................................................39 附錄三 實驗受試者基本資料表...........................................................................40

    引用文獻
    王佩凡 (2008) 。桌球正手擊球能量消耗分析—三軸加速規與氣體分析儀之比較 (碩士論文) 。國立台灣體育大學,桃園市。
    范姜嘉銘 (2014) 。不同運動項目大專男性選手之身體組成差異 (碩士論文) 。國立台北護理健康大學,台北市。
    陳嘉偉 (2012) 。甲乙組桌球選手競賽狀況能量消耗之比較研究 (學位論文) 。國立臺灣師範大學,台北市。
    彭美麗 (2007) 。羽毛球技巧圖解。北京::北京體育大學出版社
    楊繼美 (2004) 。我國優秀青少年羽球選手運動傷害之調查研究。教練科學,4,71-83。
    劉于詮 (2011) 。我國青少年羽球選手運動傷害調查分析-以2008年台灣省羽球協會會長暨Wilson (k) FACTOR 盃全國青少年羽球錦標賽為例。屏東教大體育,14,384-397。
    Achten, J., & Jeukendrup, A. E. (2003). Heart rate monitoring. Sports Medicine, 33(7), 517-538.
    Avalos, M., Hellard, P., & Chatard, J.-C. (2003). Modeling the training-performance relationship using a mixed model in elite swimmers. Medicine and Science in Sports and Exercise, 35(5), 838-846.
    Balke, B. (1960). The effect of physical exercise on the metabolic potential, a crucial measure of physical fitness. Chapter in: Exercise and Fitness, The Athletic Institute, Illinois.
    Banister, E., Calvert, T., Savage, M., & Bach, T. (1975). A systems model of training for athletic performance. Aust J Sports Med, 7(3), 57-61.
    Borresen, J., & Lambert, M. I. (2009). The quantification of training load, the training response and the effect on performance. Sports Medicine, 39(9), 779-795.
    Boyd, L. J., Ball, K., & Aughey, R. J. (2011). The reliability of MinimaxX accelerometers for measuring physical activity in Australian football. Int J Sports Physiol Perform, 6(3), 311-321.
    Boyd, L. J., Ball, K., & Aughey, R. J. (2013). Quantifying external load in Australian football matches and training using accelerometers. Int J Sports Physiol Perform, 8(1), 44-51.
    Busso, T., Denis, C., Bonnefoy, R., Geyssant, A., & Lacour, J.-R. (1997). Modeling of adaptations to physical training by using a recursive least squares algorithm. Journal of Applied Physiology, 82(5), 1685-1693.
    Casamichana, D., Castellano, J., Calleja-Gonzalez, J., San Román, J., & Castagna, C. (2013). Relationship between indicators of training load in soccer players. The Journal of Strength & Conditioning Research, 27(2), 369-374.
    Casamichana, D., Castellano, J., & Dellal, A. (2013). Influence of different training regimes on physical and physiological demands during small-sided soccer games: continuous vs. intermittent format. The Journal of Strength & Conditioning Research, 27(3), 690-697.
    Castellano, J., Casamichana, D., & Dellal, A. (2013). Influence of game format and number of players on heart rate responses and physical demands in small-sided soccer games. The Journal of Strength & Conditioning Research, 27(5), 1295-1303.
    Cejuela Anta, R., & Esteve-Lanao, J. (2011). Training load quantification in triathlon. Journal of Human Sport & Exercise, 6 (2),218-232. doi:10.4100/jhse.2011.62.03
    Chacon-Mikahil, M., Forti, V., Catai, A., Szrajer, J., Golfetti, R., Martins, L., . . . Maciel, B. (1998). Cardiorespiratory adaptations induced by aerobic training in middle-aged men: the importance of a decrease in sympathetic stimulation for the contribution of dynamic exercise tachycardia. Brazilian Journal of Medical and Biological Research, 31(5), 705-712.
    Chen, K. Y., & Bassett, D. R. (2005). The technology of accelerometry-based activity monitors: current and future. Medicine and Science in Sports and Exercise, 37(11), S490.
    Corder, K., Ekelund, U., Steele, R. M., Wareham, N. J., & Brage, S. (2008). Assessment of physical activity in youth. Journal of Applied Physiology, 105(3), 977-987.
    Crouter, S. E., Churilla, J. R., & Bassett Jr, D. R. (2006). Estimating energy expenditure using accelerometers. European Journal of Applied Physiology, 98(6), 601-612.
    Dalen, T., Jørgen, I., Gertjan, E., Havard, H. G., & Ulrik, W. (2016). Player load, acceleration, and deceleration during forty-five competitive matches of elite soccer. The Journal of Strength & Conditioning Research, 30(2), 351-359.
    Dicarlo, S. E., & Bishop, V. S. (2001). Central baroreflex resetting as a means of increasing and decreasing sympathetic outflow and arterial pressure. Annals of the New York Academy of Sciences, 940(1), 324-337.
    Eston, R. G., Rowlands, A. V., & Ingledew, D. K. (1998). Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. Journal of Applied Physiology, 84(1), 362-371.
    Foster, C., Florhaug, J. A., Franklin, J., Gottschall, L., Hrovatin, L. A., Parker, S., . . . Dodge, C. (2001). A new approach to monitoring exercise training. The Journal of Strength & Conditioning Research, 15(1), 109-115.
    Friedman, D., Jensen, F., Mitchell, J., & Secher, N. (1990). Heart rate and arterial blood pressure at the onset of static exercise in man with complete neural blockade. The Journal of physiology, 423(1), 543-550.
    Gabbett, T., Jenkins, D., & Abernethy, B. (2010). Physical collisions and injury during professional rugby league skills training. Journal of Science and Medicine in Sport, 13(6), 578-583.
    Gastin, P. B., McLean, O., Spittle, M., & Breed, R. V. (2013). Quantification of tackling demands in professional Australian football using integrated wearable athlete tracking technology. Journal of Science and Medicine in Sport, 16(6), 589-593.
    Hachiya, T., Blaber, A., Aizawa, S., & Saito, M. (2008). Heart rate responses at onset of contraction. International Journal of Sports Medicine, 29(8), 646-651.
    Halson, S. L. (2014). Monitoring training load to understand fatigue in athletes. Sports Medicine, 44(2), 139-147.
    Hayes, P. R., & Quinn, M. D. (2009). A mathematical model for quantifying training. European Journal of Applied Physiology, 106(6), 839-847.
    Haymes, E. M., & Byrnes, W. C. (1993). Walking and running energy expenditure estimated by Caltrac and indirect calorimetry. Medicine and Science in Sports and Exercise, 25(12), 1365-1369.
    Healy, G. N., Wijndaele, K., Dunstan, D. W., Shaw, J. E., Salmon, J., Zimmet, P. Z., & Owen, N. (2008). Objectively measured sedentary time, physical activity, and metabolic risk the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care, 31(2), 369-371.
    Hees, V. T., Lummel, R. C., & Westerterp, K. R. (2009). Estimating activity‐related energy expenditure under sedentary conditions using a tri‐axial seismic accelerometer. Obesity, 17(6), 1287-1292.
    Jørgensen, U., & Winge, S. (1990). Injuries in badminton. Sports Medicine, 10(1), 59-64.
    Karvonen, J., & Vuorimaa, T. (1988). Heart rate and exercise intensity during sports activities. Sports Medicine, 5(5), 303-311.
    Kavanagh, J. J., & Menz, H. B. (2008). Accelerometry: a technique for quantifying movement patterns during walking. Gait & Posture, 28(1), 1-15.
    Kozey, S. L., Lyden, K., Howe, C. A., Staudenmayer, J. W., & Freedson, P. S. (2010). Accelerometer output and MET values of common physical activities. Medicine and Science in Sports and Exercise, 42(9), 1776.
    Lambert, M., Mbambo, Z., & Gibson, A. S. C. (1998). Heart rate during training and competition for longdistance running. Journal of Sports Sciences, 16(sup1), 85-90.
    Lovell, T. W., Sirotic, A. C., Impellizzeri, F. M., & Coutts, A. J. (2013). Factors affecting perception of effort (session rating of perceived exertion) during rugby league training. Int J Sports Physiol Perform, 8(1), 62-69.
    Maciel, B., Gallo Jr, L., Marin, N. J., Lima, F. E., & Martins, L. (1986). Autonomic nervous control of the heart rate during dynamic exercise in normal man. Clinical Science (London, England: 1979), 71(4), 457-460.
    Melanson Jr, E. L., Freedson, P. S., & Blair, S. (1996). Physical activity assessment: a review of methods. Critical Reviews in Food Science & Nutrition, 36(5), 385-396.
    Miyamura, M., Ishida, K., Hashimoto, I., & Yuza, N. (1997). Ventilatory response at the onset of voluntary exercise and passive movement in endurance runners. European Journal of Applied Physiology and Occupational Physiology, 76(3), 221-229.
    Montoye, H. J., Kemper, H. C., Saris, W. H., & Washburn, R. A. (1996). Measuring Physical Activity and Energy Expenditure. Champaign, IL:Human Kinetics, 42-71.
    Morton, R., Fitz-Clarke, J., & Banister, E. (1990). Modeling human performance in running. Journal of Applied Physiology, 69(3), 1171-1177.
    Mujika, I. (1998). The influence of training characteristics and tapering on the adaptation in highly trained individuals: a review. Int J Sports Med, 19(7), 439-446.
    Mujika, I., Busso, T., Lacoste, L., Barale, F., Geyssant, A., & Chatard, J. C. (1996). Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc, 28(2), 251-258.
    O'Sullivan, S. E., & Bell, C. (2001). Training reduces autonomic cardiovascular responses to both exercise-dependent and-independent stimuli in humans. Autonomic Neuroscience, 91(1), 76-84.
    Owen, N., Healy, G. N., Matthews, C. E., & Dunstan, D. W. (2010). Too much sitting: the population-health science of sedentary behavior. Exercise and Sport Sciences Reviews, 38(3), 105.
    Polglaze, T., Dawson, B., Hiscock, D. J., & Peeling, P. (2015). A comparative analysis of accelerometer and time--motion data in elite men's hockey training and competition. International Journal of Sports Physiology & Performance, 10(4).
    Robinson, D. M., Robinson, S. M., Hume, P. A., & Hopkins, W. G. (1991). Training intensity of elite male distance runners. Medicine and Science in Sports and Exercise, 23(9), 1078-1082.
    Rothney, M. P., Schaefer, E. V., Neumann, M. M., Choi, L., & Chen, K. Y. (2008). Validity of physical activity intensity predictions by ActiGraph, Actical, and RT3 accelerometers. Obesity, 16(8), 1946-1952.
    Scanlan, A. T., Wen, N., Tucker, P. S., & Dalbo, V. J. (2014). The relationships between internal and external training load models during basketball training. The Journal of Strength & Conditioning Research, 28(9), 2397-2405.
    Scott, B. R., Lockie, R. G., Knight, T. J., Clark, A. C., & Janse de Jonge, X. (2013). A comparison of methods to quantify the in-season training load of professional soccer players. Int J Sports Physiol Perform, 8(2), 195-202.
    Smith, D. J. (2003). A framework for understanding the training process leading to elite performance. Sports Medicine, 33(15), 1103-1126.
    Stagno, K. M., Thatcher, R., & Van Someren, K. A. (2007). A modified TRIMP to quantify the in-season training load of team sport players. Journal of Sports Sciences, 25(6), 629-634.
    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.
    Trost, S. G., McIver, K. L., & Pate, R. R. (2005). Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise, 37(11), S531.
    Vähä-Ypyä, H., Vasankari, T., Husu, P., Mänttäri, A., Vuorimaa, T., Suni, J., & Sievänen, H. (2015). Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). PloS One, 10(8), e0134813.
    Vähä‐Ypyä, H., Vasankari, T., Husu, P., Suni, J., & Sievänen, H. (2015). A universal, accurate intensity‐based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64-70.
    Vanhees, L., Lefevre, J., Philippaerts, R., Martens, M., Huygens, W., Troosters, T., & Beunen, G. (2005). How to assess physical activity? How to assess physical fitness? European Journal of Cardiovascular Prevention & Rehabilitation, 12(2), 102-114.
    Welk, G. J., Blair, S. N., Wood, K., Jones, S., & Thompson, R. W. (2000). A comparative evaluation of three accelerometry-based physical activity monitors. Medicine and Science in Sports and Exercise, 32(9; SUPP/1), S489-S497.
    Westerterp, K. R. (2009). Assessment of physical activity: a critical appraisal. European Journal of Applied Physiology, 105(6), 823-828.
    Yuksel, M. F., Cengiz, A., Zorba, E., & Gokdemir, K. (2015). Effects of badminton training on physical parameters of players. Anthropologist, 21(3), 542-547.

    下載圖示
    QR CODE