簡易檢索 / 詳目顯示

研究生: 晉良昊
Chin, Liang-Hao
論文名稱: 基於深度學習方法之急診心臟病患住院預測研究
Prediction of hospital admission of emergency department for cardiac patients based on deep learning methods
指導教授: 吳怡瑾
Wu, I-Chin
口試委員: 吳怡瑾
Wu, I-Chin
陳子立
Chen, Tzu-Li
唐牧群
Tang, Muh-Chyun
口試日期: 2023/07/12
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 85
中文關鍵詞: 主訴住院預測心臟疾病急性冠心症深度學習BiLSTMCNN
英文關鍵詞: Chief complaint, Prediction of Hospital Admission, Cardiovascular disease, Acute coronary syndrome, Deep learning, BiLSTM, CNN
DOI URL: http://doi.org/10.6345/NTNU202301819
論文種類: 學術論文
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 急診壅塞問題將增加病患等待時間和造成醫療資源配置的困難,故能於病患檢傷階段進行住院預測可將醫療資源配置給急需急診醫療資源之患者。本研究以「台北馬偕教學醫院」之2011年至2018年共計八個年度,1,065,480筆急診病患於檢傷階段可得之主訴、基本資料與診斷資料為研究資料,用以預測住院可能性。本研究是以XGBoost來進行結構化變數的篩選,然後以BERT來進行主訴和補充主訴的住院預測,最後再以深度學習的方法來對於主訴和補充主訴進行住院預測。本研究涵蓋一系列的深度學習的流程,包含了結構化資料與主訴資料前處理、主訴之否定詞處理、不平衡資料集處理、心臟疾病判別、結構化變數轉成補充主訴以及XGBoost、BERT、BiLSTM和CNN模型建立及評估。研究結果發現住院預XGBoost結果最高AUC為0.8182、BERT結果最高AUC為0.8859、BiLSTM結果最高AUC為0.9447、CNN結果最高AUC為0.9268。研究推論深度學習模型在住院預測方面有較好的預測結果。再加入心臟疾病後住院預測BERT結果最高AUC為0.8972、BiLSTM結果最高AUC為0.9361、CNN結果最高AUC為0.9341。研究推論心臟疾病對於住院預測是可以提升預測力。研究方法與發現提供急診住院預測參考並希冀提升急診室資源有效配置。

    The congestion issue in the emergency room will augment patients' waiting time and pose challenges in the allocation of medical resources. Therefore, by conducting inpatient prediction during the triage stage, healthcare resources can be allocated to patients in urgent need of emergency medical attention. This study utilized data from Taipei Mackay Memorial Hospital spanning eight years, from 2011 to 2018, encompassing a total of 1,065,480 records of emergency patients' chief complaints, basic information, and diagnostic data for research purposes, aiming to predict the likelihood of hospitalization.
    This research employed XGBoost for the selection of structured variables, followed by BERT for predicting hospitalization based on chief complaints and supplementary complaints. Finally, deep learning techniques were utilized to predict hospitalization regarding both chief complaints and supplementary complaints. The study encompassed a series of deep learning processes, including preprocessing of structured and chief complaint data, handling of negation terms in chief complaints, addressing imbalanced datasets, discerning cardiac ailments, converting structured variables into supplementary complaints, and constructing and evaluating XGBoost, BERT, BiLSTM, and CNN models.
    The research findings indicated that the highest AUC for hospitalization prediction was achieved by XGBoost with a score of 0.8182, followed by BERT with a score of 0.8859, BiLSTM with a score of 0.9447, and CNN with a score of 0.9268. It was inferred that deep learning models exhibited superior predictive outcomes in hospitalization prediction. When incorporating cardiac ailments into the hospitalization prediction, the highest AUC was observed with BERT at 0.8972, followed by BiLSTM at 0.9361, and CNN at 0.9341. It was concluded that the inclusion of cardiac ailments enhanced the predictive power in hospitalization prediction. The research methodology and findings provide valuable insights for reference in emergency room hospitalization prediction, with the aim of effectively optimizing emergency department resources.

    摘  要 ii Abstract iii 第壹章 緒論 1 第一節 研究動機與目的 1 第貳章 文獻回顧 5 第一節 機器學習與深度學習方法於醫療預測相關研究 5 第二節心臟疾病預測相關研究 10 第參章 研究問題與架構 13 第一節 研究問題與架構 13 第肆章 研究方法 16 第一節 資料前處理 16 第二節 演算法介紹 24 第伍章 實驗結果與討論 36 第一節 實驗結果 36 第陸章 結論與未來展望 68 參考文獻 73 附錄A-1 合作醫院2011年度急診病患統計資料 76 附錄A-2 合作醫院2012年度急診病患統計資料 77 附錄A-3 合作醫院2013年度急診病患統計資料 78 附錄A-4 合作醫院2014年度急診病患統計資料 79 附錄A-5 合作醫院2015年度急診病患統計資料 81 附錄A-6 合作醫院2016年度急診病患統計資料 82 附錄A-7 合作醫院2017年度急診病患統計資料 83 附錄A-8 合作醫院2018年度急診病患統計資料 84

    Almansour, Njoud Abdullah, Syed, Hajra Fahim, Khayat, Nuha Radwan, Altheeb, Rawan Kanaan, Juri, Renad Emad, Alhiyafi, Jamal. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Computers in Biology and Medicine109(2019),Pages101-111. https://doi.org/10.1016/j.compbiomed.2019.04.017
    Barsasella D, Gupta S, Malwade S, Aminin, Susanti Y, Tirmadi B, Mutamakin A, Jonnagaddala J, Syed-Abdul S. Predicting length of stay and mortality among hospitalized patients with type 2 diabetes mellitus and hypertension. Int J Med Inform. 2021 Oct;154:104569. doi: 10.1016/j.ijmedinf.2021.104569. Epub 2021 Sep 4. PMID: 34525441.
    Blecker S, Sontag D, Horwitz LI, Kuperman G, Park H, Reyentovich A, Katz SD. Early Identification of Patients With Acute Decompensated Heart Failure. J Card Fail. 2018 Jun;24(6):357-362. doi: 10.1016/j.cardfail.2017.08.458. Epub 2017 Sep 5. PMID: 28887109; PMCID: PMC5837903.
    Chaudhuri S, Han H, Usvyat L, Jiao Y, Sweet D, Vinson A, Johnstone Steinberg S, Maddux D, Belmonte K, Brzozowski J, Bucci B, Kotanko P, Wang Y, Kooman JP, Maddux FW, Larkin J. Machine learning directed interventions associate with decreased hospitalization rates in hemodialysis patients. Int J Med Inform. 2021 Sep;153:104541. doi: 10.1016/j.ijmedinf.2021.104541. Epub 2021 Jul 24. PMID: 34343957.
    Dai W, Brisimi TS, Adams WG, Mela T, Saligrama V, Paschalidis ICh. Prediction of hospitalization due to heart diseases by supervised learning methods. Int J Med Inform. 2015 Mar;84(3):189-97. doi: 10.1016/j.ijmedinf.2014.10.002. Epub 2014 Oct 16. PMID: 25497295; PMCID: PMC4314395.
    Graham B., Bond R., Quinn M. and Mulvenna M., "Using Data Mining to Predict Hospital Admissions From the Emergency Department," in IEEE Access, vol. 6, pp. 10458-10469, 2018, doi: 10.1109/ACCESS.2018.2808843.
    Greco M, Angelotti G, Caruso PF, Zanella A, Stomeo N, Costantini E, Protti A, Pesenti A, Grasselli G, Cecconi M; Lombardy ICU Network. Outcome prediction during an ICU surge using a purely data-driven approach: A supervised machine learning case-study in critically ill patients from COVID-19 Lombardy outbreak. Int J Med Inform. 2022 Aug;164:104807. doi: 10.1016/j.ijmedinf.2022.104807. Epub 2022 Jun 2. PMID: 35671585; PMCID: PMC9161686.
    Hassan, D., Hussein, H. I., & Hassan, M. M. (2023). Heart disease prediction based on pre-trained deep neural networks combined with principal component analysis. Biomedical Signal Processing and Control, 79, 104019.
    Jahan, M. S., Mansourvar, M., Puthusserypady, S., Wiil, U. K., & Peimankar, A. (2022). Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches. International Journal of Medical Informatics, 163, [104790].
    Jiang, Zhengyu, Bo, Lulong, Xu, Zhenhua, Song, Yubing, Song, Yubing, Wen, Pingshan, Wan, Xiaojian, Wan, Xiaojian, Deng, Xiaoming, Deng, Xiaoming. An explainable machine learning algorithm for risk factor analysis of in-hospital mortality in sepsis survivors with ICU readmission. Computer Methods and Programs in Biomedicine 204 (2021). https://doi.org/10.1016/j.cmpb.2021.106040
    Jin S, Qin D, Liang BS, Zhang LC, Wei XX, Wang YJ, Zhuang B, Zhang T, Yang ZP, Cao YW, Jin SL, Yang P, Jiang B, Rao BQ, Shi HP, Lu Q. Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables. Int J Med Inform. 2022 May;161:104733. doi: 10.1016/j.ijmedinf.2022.104733. Epub 2022 Mar 5. PMID: 35299099.
    Kraaijvanger, Nicole & Rijpsma, Douwe & Roovers, Lian & Van Leeuwen, Henk & Kaasjager, Karin & Brand, Lillian & Horstink, Laura & Edwards, Michael. (2018). Development and validation of an admission prediction tool for emergency departments in the Netherlands. Emergency Medicine Journal. 35. emermed-2017. 10.1136/emermed-2017-206673
    Li, D., Li, X., Zhao, J., & Bai, X. (2019). Automatic staging model of heart failure based on deep learning. Biomedical Signal Processing and Control, 52, 77-83.
    Li, D., Zheng, C., Zhao, J., & Liu, Y. (2023). Diagnosis of heart failure from imbalance datasets using multi-level classification. Biomedical Signal Processing and Control, 81, 104538.
    Lin JK, Chien TW, Wang LY, Chou W. An artificial neural network model to predict the mortality of COVID-19 patients using routine blood samples at the time of hospital admission: Development and validation study. Medicine (Baltimore). 2021 Jul 16;100(28):e26532. doi: 10.1097/MD.0000000000026532. PMID: 34260529; PMCID: PMC8284724.
    Samuel, Oluwarotimi & Asogbon, Mojisola & Sangaiah, Arun & Peng, Fang & Guanglin, Li. (2016). An Integrated Decision Support System Based on ANN and Fuzzy_AHP for Heart Failure Risk Prediction. Expert Systems with Applications. 68. 163–172. 10.1016/j.eswa.2016.10.020.
    Sills, Marion R., Ozkaynak, Mustafa, Jang, Hoon. Predicting hospitalization of pediatric asthma patients in emergency departments using machine learning. International Journal of Medical Informatics 151 (2021). https://doi.org/10.1016/j.ijmedinf.2021.104468
    Tsai, Pei-Fang (Jennifer), Chen, Po-Chia, Chen, Yen-You, Song, Hao-Yuan, Lin, Hsiu-Mei, Lin, Fu-Man, Huang, Qiou-Pieng. Length of Hospital Stay Prediction at the Admission Stage for Cardiology Patients Using Artificial Neural Network. Hindawi Publishing Corporation 2016, pages 11. http://dx.doi.org/10.1155/2016/7035463
    Yao LH, Leung KC, Tsai CL, Huang CH, Fu LC. A Novel Deep Learning-Based System for Triage in the Emergency Department Using Electronic Medical Records: Retrospective Cohort Study. J Med Internet Res. 2021 Dec 27;23(12):e27008. doi: 10.2196/27008. PMID: 34958305; PMCID: PMC8749584.

    無法下載圖示 本全文未授權公開
    QR CODE