研究生: |
江坤壕 Chiang, Kun-Hao |
---|---|
論文名稱: |
藉由混合模式液相層析質譜技術分析高極性農藥 Analysis of Highly Polar Pesticides Using Mixed Mode Liquid Chromatography Tandem Mass Spectrometry |
指導教授: |
陳頌方
Chen, Sung-Fang |
口試委員: |
曾素香
Tseng, Su-Hsiang 葉怡均 Yeh, Yi-Chun 陳頌方 Chen, Sung-Fang |
口試日期: | 2023/07/25 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 高極性農藥 、液相層析 、質譜 |
英文關鍵詞: | Highly polar pesticides, Liquid chromatography, Mass spectrometry |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400637 |
論文種類: | 學術論文 |
相關次數: | 點閱:202 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
農藥廣泛地用於現今的農業當中,其伴隨的效益不僅可大幅降低人類的種植成本,更可以穩定且充足的產出作物以供應市場需求。然而,隨著農藥的使用不斷增加,食品安全問題以及檢驗方法的議題逐漸被重視。根據農藥的辛醇-水分配係數(Kow)可分為疏水性農藥和高極性農藥。高極性農藥因為其 logP 小且具有兩性離子特性,不易藉由逆相層析質譜進行分析。在本研究中,對益收生長素(Ethephon)、福賽得(Fosetyl-Al)、抑芽素(Maleic hydrazide)、嘉磷塞(Glyphosate)、固殺草(Glufosinate)及其代謝物等9種高極性農藥,使用混合模式管柱和醯胺管柱進行分離並使用液相層析串聯質譜法進行分析。藉由調整移動相的組成比例和層析梯度的改變來進行層析條件的優化。分別針對混合模式管柱和醯胺管柱進行探討,發現在移動相中加入甲酸對混合模式管柱和醯胺管柱至為重要。在優化後的層析條件下,混合模式管柱能夠有效地滯留9個高極性農藥並能在5分鐘內完成分離;而醯胺管柱亦可在10分鐘內完成。9種分析物的線性定量範圍為 0.5-100 ngmL-1,R2 > 0.995。優化後的分析方法結合Quick Polar Pesticide (QuPPe) 方法未來可應用於食物樣品分析。
Pesticides are widely used in daily agriculture and the use of them is a major food safety concern. Considering the octanol-water distribution coefficient (Kow) of pesticides, they can be categorized to hydrophobic and highly polar pesticides (HPP). Highly polar pesticides are not easy to be analyzed by reverse phase LC-MS because their small logP and zwitterionic characteristics. In this study, nine HPP including ethephon, fosetyl-Al, maleic hydrazide, glyphosate, glufosinate and their metabolites were analyzed by mixed mode and amide liquid chromatography tandem mass spectrometry. The chromatographic conditions, including mobile phase compositions and gradients, for Obelisc N and amide columns were investigated and optimized for the separation of HPP. Addition of formic acid in the mobile phase was crucial for both Obelisc N and amide chromatography. With optimized conditions, all nine HPP were effectively retained and resolved by Obelisc N and amide columns in 15 min. The linear quantitative range of nine analytes was ranged 0.5-100 ngmL-1 with R2 > 0.995. The optimized LC-MS combined with Quick Polar Pesticides methods (QuPPe) will be further applied for food samples using HPP.
Bär, J., Bickel, U., Bollmohr, S., Bombardi, L. M., Bourgin, C., bödeker, W., brühl, C., … & Zühlsdorf, A. (2022). Facts and Figures about Toxic Chemicals in Agriculture (2nd ed.). PESTICIDE ALTAS.
United States Environmental Protection Agency (2023) Types of Pesticide Ingredients. From: Types of Pesticide Ingredients | US EPA
衛生福利部食品藥物管理署(TFDA)(2022) 食品中殘留農藥檢驗方法-多重殘留分析方法(五) Method of Test for Pesticide Residues in Foods- Multiresidue Analysis (5) MOHWP0055.05
Lehotay, S. J., Son, K. A., Kwon, H., Koesukwiwat, U., Fu, W., Mastovska, K., ... & Leepipatpiboon, N. (2010). Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of Chromatography A, 1217(16), 2548-2560.
衛生福利部食品藥物管理署(TFDA)(2021) 食品中殘留農藥檢驗方法- 極性農藥及其代謝物多重殘留分析方法 Method of Test for Pesticide Residues in Foods - Multiresidue Analysis of Polar Pesticides and their Metabolites TFDAP0006.01
Anastassiades M., Wachtler A.-K., Kolberg D. I., Eichhorn E., Marks H., Benkenstein A., … & Cerchia G. (2021). Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC- or IC-MS/MS Measurement. EURL-SRM.
Han, Y., Song, L., Zhao, P., Li, Y., Zou, N., Qin, Y., ... & Pan, C. (2016). Residue determination of glufosinate in plant origin foods using modified Quick Polar Pesticides (QuPPe) method and liquid chromatography coupled with tandem mass spectrometry. Food chemistry, 197, 730-736.
Robles-Molina, J., Gilbert-López, B., García-Reyes, J. F., & Molina-Díaz, A. (2017). Simultaneous liquid chromatography/mass spectrometry determination of both polar and “multiresidue” pesticides in food using parallel hydrophilic interaction/reversed-phase liquid chromatography and a hybrid sample preparation approach. Journal of Chromatography A, 1517, 108-116.
Steinmann, H. H., Dickeduisberg, M., & Theuvsen, L. (2012). Uses and benefits of glyphosate in German arable farming. Crop Protection, 42, 164-169.
Baylis, A. D. (2000). Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Management Science: Formerly Pesticide Science, 56(4), 299-308.
Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe, 28(1), 1-15.
Donthi, D. N. R., & Kumar, A. D. D. (2022). Glufosinate Ammonium An Overview. Pesticide Action Network, India.
Turnbull, C. G. N., Sinclair, E. R., Anderson, K. L., Nissen, R. J., Shorter, A. J., & Lanham, T. E. (1999). Routes of ethephon uptake in pineapple (Ananas comosus) and reasons for failure of flower induction. Journal of plant growth regulation, 18, 145-152.
Fournier, B., Dos Santos, S. P., Gustavsen, J. A., Imfeld, G., Lamy, F., Mitchell, E. A., ... & Heger, T. J. (2020). Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Science of The Total Environment, 738, 139635.
Weis, G. G., Schoenemann, J. A., & Groskopp, M. D. (1980). Influence of time of application of maleic hydrazide on the yield and quality of Russet Burbank potatoes. American Potato Journal, 57, 197-204.
Hanke, I., Singer, H., & Hollender, J. (2008). Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography–tandem mass spectrometry: performance tuning of derivatization, enrichment and detection. Analytical and bioanalytical chemistry, 391, 2265-2276.
Goscinny, S., Unterluggauer, H., Aldrian, J., Hanot, V., & Masselter, S. (2012). Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS”. Food Analytical Methods, 5, 1177-1185.
Adams, S., Guest, J., Dickinson, M., Fussell, R. J., Beck, J., & Schoutsen, F. (2017). Development and validation of ion chromatography–tandem mass spectrometry-based method for the multiresidue determination of polar ionic pesticides in food. Journal of agricultural and food chemistry, 65(34), 7294-7304.
López, S. H., Scholten, J., Kiedrowska, B., & de Kok, A. (2019). Method validation and application of a selective multiresidue analysis of highly polar pesticides in food matrices using hydrophilic interaction liquid chromatography and mass spectrometry. Journal of Chromatography A, 1594, 93-104.
Gormez, E., Golge, O., & Kabak, B. (2021). Quantification of fosetyl-aluminium/phosphonic acid and other highly polar residues in pomegranates using Quick Polar Pesticides method involving liquid chromatography-tandem mass spectrometry measurement. Journal of Chromatography A, 1642, 462038.
Hidalgo-Ruiz, J. L., Romero-González, R., Vidal, J. L. M., & Frenich, A. G. (2021). Monitoring of polar pesticides and contaminants in edible oils and nuts by liquid chromatography-tandem mass spectrometry. Food Chemistry, 343, 128495.
Golge, O. (2021). Validation of quick polar pesticides (QuPPe) method for determination of eight polar pesticides in cherries by LC-MS/MS. Food Analytical Methods, 14(7), 1432-1437.
Domingos Alves, R., Romero-González, R., López-Ruiz, R., Jiménez-Medina, M. L., & Garrido Frenich, A. (2016). Fast determination of four polar contaminants in soy nutraceutical products by liquid chromatography coupled to tandem mass spectrometry. Analytical and bioanalytical chemistry, 408, 8089-8098.
Savini, S., Bandini, M., & Sannino, A. (2019). An improved, rapid, and sensitive ultra-high-performance liquid chromatography-high-resolution orbitrap mass spectrometry analysis for the determination of highly polar pesticides and contaminants in processed fruits and vegetables. Journal of agricultural and food chemistry, 67(9), 2716-2722.
Wang, L., Fei, T., Qi, D., Sha, Y., Wu, D., & Liu, B. (2015). Development of microwave-assisted extraction and liquid chromatography-tandem mass spectrometry for determination of maleic hydrazide residues in tobacco. Analytical Methods, 7(12), 5103-5107.
Lopez, S. H., Dias, J., Mol, H., & de Kok, A. (2020). Selective multiresidue determination of highly polar anionic pesticides in plant-based milk, wine and beer using hydrophilic interaction liquid chromatography combined with tandem mass spectrometry. Journal of Chromatography A, 1625, 461226.
López, S. H., Dias, J., & de Kok, A. (2020). Analysis of highly polar pesticides and their main metabolites in animal origin matrices by hydrophilic interaction liquid chromatography and mass spectrometry. Food Control, 115, 107289.
Senchenkova, E. M. (2003). Michael Tswett-the creator of chromatography.
Bird, I. M. (1989). High performance liquid chromatography: principles and clinical applications. BMJ: British Medical Journal, 299(6702), 783.
Yabré, M., Ferey, L., Somé, I. T., & Gaudin, K. (2018). Greening reversed-phase liquid chromatography methods using alternative solvents for pharmaceutical analysis. Molecules, 23(5), 1065.
Prasain, J. K. (2012). Tandem mass spectrometry-applications and principles.
Traeger, J. C. (2016). The development of electron ionization. In The encyclopedia of mass spectrometry (pp. 77-82). Elsevier.
Munson, M. S., & Field, F. H. (1966). Chemical ionization mass spectrometry. I. General introduction. Journal of the American Chemical Society, 88(12), 2621-2630. Mora, Juan Fernandez de la, et al. "Electrochemical processes in electrospray ionization mass spectrometry." Journal of Mass Spectrometry 35.8 (2000): 939-952.
Mora, J. F. D. L., Van Berkel, G. J., Enke, C. G., Cole, R. B., Martinez‐Sanchez, M., & Fenn, J. B. (2000). Electrochemical processes in electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 35(8), 939-952.
Bahr, U., Karas, M., & Hillenkamp, F. (1994). Analysis of biopolymers by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Fresenius' journal of analytical chemistry, 348, 783-791.
Houk, R. S., & Thompson, J. J. (1988). Inductively coupled plasma mass spectrometry. Mass Spectrometry Reviews, 7(4), 425-461.
Aliyari, E., & Konermann, L. (2020). Formation of gaseous proteins via the ion evaporation model (IEM) in electrospray mass spectrometry. Analytical chemistry, 92(15), 10807-10814.
Touboul, D., Jecklin, M. C., & Zenobi, R. (2008). Ion internal energy distributions validate the charge residue model for small molecule ion formation by spray methods. Rapid Communications in Mass Spectrometry, 22(7), 1062-1068.
Klopman, G., Li, J. Y., Wang, S., & Dimayuga, M. (1994). Computer automated log P calculations based on an extended group contribution approach. Journal of Chemical Information and Computer Sciences, 34(4), 752-781.
Prasanna, S., & Doerksen, R. J. (2009). Topological polar surface area: a useful descriptor in 2D-QSAR. Current medicinal chemistry, 16(1), 21-41.
Alpert, A. J. (2015). Electrostatic effects in hydrophilic interaction chromatography (HILIC): A brief review. Chromatography Today, 4-7.
Dias, J., López, S. H., Mol, H., & de Kok, A. (2021). Influence of different hydrophilic interaction liquid chromatography stationary phases on method performance for the determination of highly polar anionic pesticides in complex feed matrices. Journal of Separation Science, 44(11), 2165-2176.
Vass, A., Robles-Molina, J., Pérez-Ortega, P., Gilbert-López, B., Dernovics, M., Molina-Díaz, A., & García-Reyes, J. F. (2016). Study of different HILIC, mixed-mode, and other aqueous normal-phase approaches for the liquid chromatography/mass spectrometry-based determination of challenging polar pesticides. Analytical and bioanalytical chemistry, 408, 4857-4869.
Manzano-Sánchez, L., Martínez-Martínez, J. A., Domínguez, I., Martínez Vidal, J. L., Frenich, A. G., & Romero-González, R. (2020). Development and application of a novel pluri-residue method to determine polar pesticides in fruits and vegetables through liquid chromatography high resolution mass spectrometry. Foods, 9(5), 553.
Gasparini, M., Angelone, B., & Ferretti, E. (2020). Glyphosate and other highly polar pesticides in fruit, vegetables and honey using ion chromatography coupled with high resolution mass spectrometry: Method validation and its applicability in an official laboratory. Journal of Mass Spectrometry, 55(11), e4624.
Nortes-Méndez, R., Robles-Molina, J., López-Blanco, R., Vass, A., Molina-Díaz, A., & Garcia-Reyes, J. F. (2016). Determination of polar pesticides in olive oil and olives by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry and high resolution mass spectrometry. Talanta, 158, 222-228.
Li, S., Ren, J., Zhang, Y., Li, L., Zhao, Y., Chen, D., & Wu, Y. (2020). A highly-efficient and cost-effective pretreatment method for selective extraction and detection of perchlorate in tea and dairy products. Food chemistry, 328, 127113.
Ciasca, B., Pecorelli, I., Lepore, L., Paoloni, A., Catucci, L., Pascale, M., & Lattanzio, V. M. T. (2020). Rapid and reliable detection of glyphosate in pome fruits, berries, pulses and cereals by flow injection–Mass spectrometry. Food chemistry, 310, 125813.
Chamkasem, N. (2018). Rapid determination of polar pesticides and plant growth regulators in fruits and vegetables by liquid chromatography/tandem mass spectrometry. Journal of Environmental Science and Health, Part B, 53(9), 622-631.
Li, W., Dai, X., Pu, E., Bian, H., Chen, Z., Zhang, X., ... & Han, L. (2020). HLB-MCX-based solid-phase extraction combined with liquid chromatography–tandem mass spectrometry for the simultaneous determination of four agricultural antibiotics (Kasugamycin, Validamycin A, Ningnanmycin, and Polyoxin B) residues in plant-origin foods. Journal of Agricultural and Food Chemistry, 68(47), 14025-14037.
Li, X., Wang, S., Guo, Z., Li, X., Zhang, Q., & Li, H. (2021). Determination of fosetyl-aluminum in wheat flour with extract-dilute-shoot procedure and hydrophilic interaction liquid chromatography tandem mass spectrometry. Separations, 8(11), 197.
Wu, Y., Zhou, Y., Jiao, X., She, Y., Zeng, W., Cui, H., & Pan, C. (2023). Development and inter-laboratory validation of analytical methods for glufosinate and its two metabolites in foods of plant origin. Analytical and Bioanalytical Chemistry, 1-12.
Kaczyński, P. (2017). Clean-up and matrix effect in LC-MS/MS analysis of food of plant origin for high polar herbicides. Food chemistry, 230, 524-531.
Shinde, R., & Banerjee, K. (2022). Determination of highly polar and ionic pesticides in grape and pomegranate using liquid chromatography tandem mass spectrometry. Journal of AOAC International, 105(5), 1341-1349.
Tóth, E., Tölgyesi, Á., Bálint, M., Ma, X., & Sharma, V. K. (2022). Separation of fosetyl and phosphonic acid in food matrices with mixed-mode HPLC column coupled with tandem mass spectrometric detection and method application to other highly polar pesticides. Journal of Chromatography B, 1189, 123083.
Abdelwahed, M. H., Khorshed, M. A., Elmarsafy, A. M., Elshabrawy, M. S., & Souaya, E. R. (2021). Polar reversed-phase liquid chromatography coupled with triple quadrupole mass spectrometer method for simple and rapid determination of maleic hydrazide residues in some fruits and vegetables. Food Analytical Methods, 14, 172-185.
Alechaga, É., Moyano, E., & Galceran, M. T. (2015). Simultaneous analysis of kasugamycin and streptomycin in vegetables by liquid chromatography-tandem mass spectrometry. Analytical Methods, 7(8), 3600-3607.
Melton, L. M., Taylor, M. J., & Flynn, E. E. (2019). The utilisation of ion chromatography and tandem mass spectrometry (IC-MS/MS) for the multi-residue simultaneous determination of highly polar anionic pesticides in fruit and vegetables. Food chemistry, 298, 125028.
Bauer, A., Luetjohann, J., Rohn, S., Kuballa, J., & Jantzen, E. (2018). Ion chromatography tandem mass spectrometry (IC-MS/MS) multimethod for the determination of highly polar pesticides in plant-derived commodities. Food Control, 86, 71-76.