簡易檢索 / 詳目顯示

研究生: 陳品卉
Chen, Pin-Hui
論文名稱: 吸氣肌熱身對高強度腳踏車間歇運動表現之影響
Effect of inspiratory muscle warm-up on the high-intensity intermittent cycling performance
指導教授: 鄭景峰
Cheng, Ching-Feng
學位類別: 碩士
Master
系所名稱: 運動競技學系
Department of Athletic Performance
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 48
中文關鍵詞: 熱身活動衰竭運動肌肉氧飽和度衝刺
英文關鍵詞: warm-up, exhaustive exercise, muscle oxygen saturation, sprint
論文種類: 學術論文
相關次數: 點閱:226下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究在探討吸氣肌熱身對於隨後高強度腳踏車間歇運動表現的影響。方法:以12名大專男性優秀運動選手為受試對象(年齡,21.3 ± 2.0歲;身高,178.7 ± 6.8公分;體重,72.0 ± 7.2公斤),使用重覆量數、平衡次序原則的實驗設計,所有受試者須進行三種不同實驗處理,包括吸氣肌熱身處理 (inspiratory muscle warm-up, IMW) 、安慰劑處理 (placebo, PLA) 與控制處理 (control, CON) 。控制處理不進行吸氣肌熱身,而安慰劑處理與吸氣肌熱身處理分別以強度15%及40%的最大吸氣壓力 (maximum inspiratory mouth pressures, PImax) ,進行2組30下的吸氣肌熱身。實驗處理後,受試者須在腳踏車測功儀上,以180%最大有氧動力輸出反覆進行間歇休息20秒的10秒衝刺,直到衰竭。實驗過程中,分析衝刺的次數、血乳酸、血氨、RPE (rating of perceived exertion) 與RPB (rating of perceived breathlessness) ,以及股外側肌的肌肉氧飽和度。結果:在衝刺次數、血乳酸與血氨濃度方面,三種實驗處理間皆未達顯著差異。在測驗前的RPE與RPB,IMW皆顯著高於PLA(RPE,IMW vs. PLA,10.3 ± 2.5 vs. 8.5 ± 2.4分,p < .05;RPB,IMW vs. PLA,1.3 ± 1.2 vs. 0.7 ± 0.7分,p < .05),且在測驗後5分鐘的RPB,PLA顯著低於CON(PLA vs. CON,3.0 ± 1.3 vs. 4.1 ± 1.9分,p < .05)。在衝刺次數之中位數前三趟 (before Md) 的組織氧合指標 (TSI) ,IMW顯著高於CON (IMW vs. CON, -15.95 ± 2.80 vs. -20.14 ± 5.57 %, p < .05) 。在高強度腳踏車間歇測驗中的中位數前三趟 (before Md) (IMW vs. CON, 17.44 ± 5.84 vs. 21.37 ± 5.14 μmol, p < .05) 、中位數後三趟 (after Md) (IMW vs. CON, 17.49 ± 5.94 vs. 21.44 ± 5.36 μmol, p < .05) 及最後三趟 (last) (IMW vs. CON, 17.46 ± 5.94 vs. 21.37 ± 4.87 μmol, p < .05) ,IMW的去氧血紅素 (HHb) 均顯著低於CON。結論:本研究結果顯示,吸氣肌熱身可能無法改善高強度腳踏車間歇運動表現,然而,這種熱身活動能減緩衝刺運動所引起的肌肉缺氧情形。

    Purpose: To investigate the effects of inspiratory muscle (IM) warm-up on subsequent high-intensity intermittent cycling performance. Methods: Twelve male athletes (age, 21.3 ± 2.0 yrs; height, 178.7 ± 6.8 cm; weight, 72.0 ± 7.2 kg) were voluntarily recruited in this repeated measures and crossover designed study. All participants were requested to perform three different experimental treatments, including inspiratory muscle warm-up (IMW), placebo (PLA) and control (CON). The control trial was without IM warm-up while the PLA and IMW were with IM warm-up by performing two sets of 30 breaths at 15% and 40% maximum inspiratory mouth pressure (PImax), respectively. After treatment, participants repeatedly performed 10 s sprint at 180% of maximal aerobic power output with 20 s rest interval on a cycling ergometer until exhaustion. The numbers of sprint, blood lactate and ammonia concentrations, ratings of perceived exertion (RPE), and perceived intensity of breathlessness sensation (RPB), and muscle oxygen saturation of the vastus lateralis were measured during the experiments. Results: No significant differences were found on the numbers of sprint, blood lactate and ammonia concentrations among three treatments. The RPE and RPB scores in IMW at pre-test were significantly higher than those in PLA (RPE, IMW vs. PLA, 10.3 ± 2.5 vs. 8.5 ± 2.4, p < .05; RPB, IMW vs. PLA, 1.3 ± 1.2 vs. 0.7 ± 0.7, p < .05), and the RPB in PLA at 5-min post-test was significantly lower than that in CON (PLA vs. CON, 3.0 ± 1.3 vs. 4.1 ± 1.9, p < .05). The tissue saturation index (TSI) in IMW at the three sprints before median of sprints was significantly higher than that in CON (IMW vs. CON, -15.95 ± 2.80 vs. -20.14 ± 5.57 %, p < .05). The deoxygenated haemoglobin (HHb) in IMW at three sprints before (IMW vs. CON, 17.44 ± 5.84 vs. 21.37 ± 5.14 μmol, p < .05) and after (IMW vs. CON, 17.49 ± 5.94 vs. 21.44 ± 5.36 μmol, p < .05) median of sprints, and at the last three sprints (IMW vs. CON, 17.46 ± 5.94 vs. 21.37 ± 4.87 μmol, p < .05) during high-intensity intermittent cycling test were significantly lower than those in CON. Conclusion: These results indicate that the IMW might not improve the subsequent high-intensity intermittent cycling sprint performance, however, the warm-up activities in this manner could attenuate the sprint-induced muscle deoxygenation.

    中文摘要  ……………………………………………………………………  i 英文摘要  ……………………………………………………………………  ii 謝誌    ……………………………………………………………………  iii 目次    ……………………………………………………………………  iv 表次    ……………………………………………………………………  vi 圖次    ……………………………………………………………………  vi 第壹章 緒論 第一節 前言 …………………………………………………………………… 1 第二節 研究的重要性 ………………………………………………………… 3 第三節 研究目的 ……………………………………………………………… 3 第四節 研究假設 ……………………………………………………………… 3 第五節 研究範圍 ……………………………………………………………… 3 第六節 研究限制 ……………………………………………………………… 4 第七節 名詞操作性定義 ……………………………………………………… 4 第貳章 文獻探討 第一節 呼吸的生理機制 ……………………………………………………… 6 第二節 吸氣肌熱身對運動表現影響之相關研究 …………………………… 9 第三節 肌肉氧飽和度的測量 ………………………………………………… 11 第四節 本章總結 ……………………………………………………………… 12 第參章 研究方法與步驟 第一節 受試對象 ……………………………………………………………… 13 第二節 實驗設計 ……………………………………………………………… 13 第三節 實驗時間與地點 ……………………………………………………… 13 第四節 實驗流程圖 …………………………………………………………… 14 第五節 實驗儀器與設備 ……………………………………………………… 15 第六節 實驗方法與步驟 ……………………………………………………… 15 第七節 資料分析與處理 ……………………………………………………… 22 第肆章 結果 第一節 受試者基本資料 ……………………………………………………… 23 第二節 吸氣肌熱身對隨後高強度間歇運動表現的影響 …………………… 24 第三節 吸氣肌熱身對隨後運動中血液生化值的影響 ……………………… 25 第四節 吸氣肌熱身對隨後運動中RPE與RPB的影響 …………………… 26 第五節 吸氣肌熱身對隨後運動中肌肉氧飽和度的影響 …………………… 28 第伍章 討論與結論 第一節 吸氣肌熱身對高強度間歇運動表現與血液生化值之影響 ………… 30 第二節 吸氣肌熱身對隨後運動中RPE與RPB 之影響  ………………… 32 第三節 吸氣肌熱身對隨後運動中肌肉氧飽和度之影響 …………………… 34 第四節 結論 …………………………………………………………… 36 第五節 建議 …………………………………………………………… 36 參考文獻 ………………………………………………………………………… 37 附錄 附錄一 受試者須知 …………………………………………………………… 43 附錄二 健康情況調查表 ……………………………………………………… 44 附錄三 受試者自願同意書 …………………………………………………… 45 附錄四 NIRS近紅外線光譜簡易操作手冊  ………………………………… 46 附錄五 實驗記錄表 …………………………………………………………… 48

    一、中文部分
    王光濤(2001)。運動生理學。臺北市:合記圖書。
    江壽德(1982)。呼吸生理學。臺北市:環球書社。
    何寶成、蔡忠昌(2007)。熱身運動對於運動表現的影響。大專體育,91,165-173。
    林正常、林貴福、徐臺閣、吳慧君(譯)(2003)。運動生理學:體適能與運動表現的理論與應用。臺北市:藝軒。
    林正常(2005)。運動生理學。臺北市:師大書苑。
    許世昌(1997)。新編解剖生理學。台北市:永大書局。
    郭堉圻、蔣孝珍(2009)。呼吸肌訓練在運動表現上的應用。中華體育季刊,23(3),55-61。
    麥麗敏(1996)。新編生理學(二版)。臺北市:永大書局。
    陳玫茵、唐憶淨、楊宗穎、劉丕華(2006)。肺功能量計的判讀。基層醫學,21(10),296-300。
    潘賢章、林正常、林信甫(2006)。呼吸肌熱身對腳踏車運動時生理反應與衰竭時間的影響。臺大體育學報,9,39-54。

    二、英文部分
    Amann, M., Romer, L. M., Subudhi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007). Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. The Journal of Physiology, 581(Pt. 1), 389-403.
    Berry, M. J., Puntenney, P. J., & Sandt, L. A. (1989). Ventilatory responses during varied stride and pedal frequencies. Respiration Physiology, 78(2), 219-228.
    Borg, G. A. (1982). Psychophysical of perceived exertion. Medicine and Science in Exercise, 14(5), 377-381.
    Boussana, A., Matecki, S., Galy, O., Hue, O., Ramonatxo, M., & Le Gallais, D. (2001). The effect of exercise modality on respiratory muscle performance in triathletes. Medicine and Science in Sports and Exercise, 33(12), 2036-2043.
    Boussana, A., Galy, O., Hue, O., Matecki, S., Varray, A., Ramonatxo, M., & Le Gallais, D. (2003). The effects of prior cycling and a successive run on respiratory muscle performance in triathletes. International Journal of Sports Medicine, 24(1), 63-70.
    Brazy, J. E. (1988). Effect of crying on cerebral blood volume and cytochrome aa3. The Journal of Pediatrics, 112(3), 457-461.
    Brazy, J. E., Lewis, D. V., Mitnick, M. H., & Jöbsis-Vandervliet, F. F. (1985). Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics, 75(2), 217-225.
    Burdon, J. G., Juniper, E. F., Killian, K. J., Hargreave, F. E., & Campbell, E. J. (1982). The perception of breathlessness in asthma. The American Review of Respiratory Disease, 126(5), 825-828.
    Burnley, M., Doust, J. H., & Jones, A. M. (2005). Effects of prior warm-up regime on severe-intensity cycling performance. Medicine and Science in Sports and Exercise, 37(5), 838-845.
    Casavola, C., Paunescu, L. A., Fantini, S., Franceschini, M. A., Lugarà, P. M., & Gratton, E. (1999). Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease. Clinical Hemorheology and Microcirculation, 21(3-4), 389-393.
    David, B. (2003). Warm up I: Potential mechanisms and the effects of passive warm up on exercise performance. Sports Medicine, 33(6), 439-454.
    Dempsey, J. A., Romer, L., Rodman, J., Miller, J., & Smith, C. (2006). Consequences of exercise-induced respiratory muscle work. Respiratory Physiology and Neurobiology, 151(2-3), 242-250.
    Dempsey, J. A., Sheel, A. W., St Croix, C. M., & Morgan, B. J. (2002). Respiratory influences on sympathetic vasomotor outflow in humans. Respiratory Physiology and Neurobiology, 130(1), 3-20.
    Giannini, I., Ferrari, M., Carpi, A., & Fasella, P. (1982). Rat brain monitoring by near infrared spectroscopy: An assessment of possible clinical significance. Physiological Chemistry Physics, 14(3), 295-305.
    Griffiths, L. A., & McConnell, A. K. (2007). The influence of inspiratory and expiratory muscle training upon rowing performance. European Journal of Applied Physiology, 99(5), 457-466.
    Johnson, M. A., Sharpe, G. R., & Brown, P. I. (2007). Inspiratory muscle training improves cycling time-trial performance and anaerobic work capacity but not critical power. European Journal of Applied Physiology, 101(6), 761-770.
    Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267.
    Jöbsis, F. F. (1979). Oxidative metabolic effects of cerebral hypoxia. Advances in Neurology, 26, 299-318.
    Jöbsis-Vandervliet, F. F., Fox, E., & Sugioka, K. (1987). Monitoring of cerebral oxygenation and cytochrome aa3 redox state. International Anesthesiology Clinics, 25(3), 209-230.
    Keramidas, M. E., Kounalakis, S. N., Eiken, O., & Mekjavic, I. B. (2011). Muscle and cerebral oxygenation during exercise performance after short-term respiratory work. Respiratory Physiology and Neurobiology, 175(2), 247-254.
    Lin, H., Tong, T. K., Huang, C., Nie, J., Lu, K., & Quach, B. (2007). Specific inspiratory muscle warm-up enhances badmintion footwork performance. Applied Physiology, Nutrition, and Metabolism, 32(6), 1082-1088.
    McConnell, T. R. (1988). Practical considerations in the testing of VO2max in runners. Sport Medicine, 5(1), 57-68.
    Nielsen, H. B., Boesen, M., & Secher, N. H. (2001). Near-infrared spectroscopy determined brain and muscle oxygenation during exercise with normal and resistive breathing. Acta Phsiologica Scandinavica, 171(1), 63-70.
    Robergs, R. A., & Keteyian, S. J. (2003). Fundamentals of exercise physiology for fitness, performance, and health (2nd ed.). New York: McGraw-Hill.
    Roussos, C. S., & Macklem, P. T. (1977). Diaphragmatic fatigue in man. Journal of Applied Physiology, 43(2), 189-197.
    Richardson, R. S., Noyszewski, E. A., Kendrick, K. F., Leigh, J. S., & Wagner, P. D. (1995). Myoglobin O2 desaturation during exercise: Evidence of limited O2 transport. The Journal of Clinical Investigation, 96(4), 1916-1926.
    Romer, L. M., McConnell, A. K., & Jones, D. A. (2002). Effects of inspiratory muscle training on time-trial performance in trained cyclists. Journal of Sports Sciences, 20(7), 547-562.
    Shellock, F. G., & Prentice, W. E. (1985). Warming-up and stretching for improved physical performance and prevention of sports-related injuries. Sports Medicine, 2(4), 267-278.
    Subudhi, A. W., Dimmen, A. C., & Roach, R. C. (2007). Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. Journal of Applied Physiology, 103(1), 177-183.
    Suzuki, S., Takasaki, S., Ozaki, T., & Kobayashi, Y. (1999). A tissue oxygenation monitor using spatially resolved spectroscopy. The International Society for Optical Engineering, 3597, 582-592.
    Szal, S. F., & Schoene, R. B. (1989). Ventilatory response to rowing cycling in elite oarswornen. Journal of Applied Physiology, 67(1), 264-269.
    Tong, T. K., Fu, F. H., Chow, B. C., Quach, B., & Lu, K. (2003). Increased sensations of intensity of breathlessness impairs maintenance of intense intermittent exercise. European Journal of Applied Physiology, 88(4-5), 370-379.
    Tong, T. K., Fu, F. H., Quach, B., & Lu, K. (2004). Reduced sensations of intensity of breathlessness enhances maintenance of intense intermittent exercise. European Journal of Applied Physiology, 92(3), 275-284.
    Tong, T. K., & Fu, F. H. (2006). Effect of specific inspiratory muscle warm-up on intense intermittent run to exhaustion. European Journal of Applied Physiology, 97(6), 673-680.
    Tong, T. K., Fu, F. H., Chung, P. K., Eston, R., Lu, K., Quach, B., … So, R. (2008). The effect of inspiratory muscle training on high-intensity, intermittent running performance to exhaustion. Applied Physiology, Nutrition, and Metabolism, 33(4), 671-681.
    Tong, T. K., Fu, F. H., Eston, R., Chung, P. K., Quach, B., & Lu, K. (2010). Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of running. Journal of Strength and Conditioning Research, 24(11), 3041-3048.
    Van Beekvelt, M. C., Colier, W. N., Wevers, R. A., & Van Engelen, B. G. (2001). Performance of near-infrared spectroscopy in measuring local O2 consumption and blood flow in skeletal muscle. Journal of Applied Physiology, 90(2), 511-519.
    Vogiatzis, I., Athanasopoulos, D., Habazettl, H., Kuebler, W. M., Wagner, H., Roussos, C., … Zakynthinos, S. (2009). Intercostal muscle blood flow limitation in athletes during maximal exercise. Journal of Physiology, 587(Pt. 14), 3665-3677.
    Volianitis, S., McConnell, A. K., Koutedakis, Y., & Jones, D. A. (1999). The influence of prior activity upon inspiratory muscle strength in rowers and non-rowers. International Journal of Sports Medicine, 20(8), 542-547.
    Volianitis, S., McConnell, A. K., Koutedakis, Y., & Jones, D. A. (2001a). Specific respiratory warm-up improves rowing performance and exertional dyspnea. Medicine and Science in Sports and Exercise, 33(7), 1189-1193.
    Volianitis, S., McCnnell, A. K., Koutedakis, Y., McNaughton, L., Backx, K., & Jones, D. A. (2001b). Inspiratory muscle training improves rowing performance. Medicine and Science in Sports and Exercise, 33(5), 803-809.
    Wen, A. S., Woo, M. S., & Keens, T. G. (1997). How many maneuvers are required to measure maximal inspiratory pressure accurately. Chest, 111(3), 802-807.
    Wilson, J. R., Mancini, D. M., McCully, K., Ferraro, N., Lanoce, V., & Chance, B. (1989). Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation, 80(6), 1668-1674.

    下載圖示
    QR CODE