簡易檢索 / 詳目顯示

研究生: 黃珮瑜
Pei-Yu Huang
論文名稱: 鐵鉑磁性奈米微粒之製備及其應用
Synthesis and Application of FePt Magnetic Nanoparticles
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 92
中文關鍵詞: 磁性奈米微粒鐵鉑化學合成法介面活性劑自組裝複合奈米材料單鍋合成法硫化鎘半導體
英文關鍵詞: magnetic nanoparticles, FePt, rganometallic synthesis, surfactant, self-assembly, one-pot synthesis, CdS quantum dots
論文種類: 學術論文
相關次數: 點閱:218下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著生物醫學與奈米科技與蓬勃發展,結合材料與生物科技已經成為必然趨勢。藉由磁性物質本身的磁特性,我們可以將其與生物分子結合,而達到分離的效果。因此,近年來已有為數不少相關於磁性奈米微粒之製備及應用的文獻報導發表。
    本篇論文著眼於鐵鉑磁性奈米微粒的合成。我們藉著改變微粒表面介面活性劑的組成及搭配晶種合成方式,成功的達到操控微粒尺度及均勻度之目的。此化學合成方法所合成之微粒尺度約在三奈米到七奈米之間。再者,我們調配不同比例之攜帶溶劑來稀釋所合成之磁性奈米微粒,配合微粒本身的磁特性,而呈現了高度自組裝的效果。透過此種自組裝,我們在電子顯微鏡下觀察到了單層、雙層、多層乃至於環狀的結構出現。
    近年來有許多鐵鉑磁性奈米微粒與生物分子結合的文獻發表,然而此磁性材料在生物上的毒性未臻瞭解。因此,我們嘗試著將鐵鉑磁性奈米微粒修飾成水溶性並與細胞結合。利用細胞內的影像追蹤,並對此種鐵鉑磁性奈米微粒材料做細胞的毒性測試,而從目前的實驗結果初步證明,此種鐵鉑磁性材料對人類子宮頸癌細胞並不具有毒性。
    最後則嘗試著結合鐵鉑磁性奈米微粒與硫化鎘半導體,此兩種功能迥異的奈米材料,利用簡便的單鍋合成方法而得到鐵鉑-硫化鎘之核-殼複合奈米材料,其尺度約十奈米左右。

    With the proceeding of Nanotechnology and biomedicine, there is a tendency towards integrating the material science and biotechnology. We could separate the magnetic materials from the biomolecules by the characteristics of their magnetism. As a result, there are numerous literature published related to synthesis and application of magnetic nanoparticles (MNPs) up-to-now.
    The thesis demonstrates the organometallic synthesis of FePt MNPs. With the various surfactants and seed-mediated growth methods, we got not only tunable sizes ( about 3 nm ~ 7 nm ) but homogeneity of as-synthesized FePt MNPs. Alternately, FePt MNPs diluting with desirable carrier solvents resulted in assembling themselves onto a solid carbon substrate. We observed the monolayer, submonolayer, multilayer and even nanoring structure in TEM images.
    Many applications of biomolecular-magnetic particle hybrid conjugates have been reported recently, the cytotoxicity of MNPs however has not yet been investigated. Consequently we tried to modify the FePt MNPs into hydrophilic with carboxylic acid and also investigated the toxicity of FePt MNPs in live cells using the MTT assay. And our work demonstrated that the FePt MNPs did not cause significant cytotoxicity in HeLa cells.
    Finally, we report on a one-pot chemical synthesis method for generating the FePt magnetic nanoparticles and the CdS quantum dots. We successfully demonstrated the conjugation of the core-shell structure of nanoparticles about 10 nm.

    Abstract (Chinese) …………………………………………………..……… i Abstract (English) ……………………………………………………..…… ii Acknowledgment (Chinese) ……………………………………………..… iv Table of Contents ……………………………………………………..……… v Table Lists…………………………………………………………….………… ix Figure Captions……………………………………………………………..… x Chapter 1 Introduction…………………………………………………… 1 1.1 Preface………………………………………………..… 1 1.2 Motivation………………………………………..…… 4 Chapter 2 Theory Background and Literature Organization… 6 2.1 The Characteristic of Magnetic Nanoparticles…...… 6 2.1.1 Magnetism……………………………………...……… 8 2.1.2 Hysteresis……………………………………………… 11 2.1.3 Anisotropy…………………………………………..… 12 2.1.4 Single Domain Particles…………………………… 14 2.1.5 Superparamagnetism………………………….…… 15 2.2 The Application of Magnetic Nanoparticles………… 20 2.3 Organometallic Synthesis of Magnetic Nanoparticles……………………………………….………… 22 2.3.1 Synthesis of Co and CoPt3 Magnetic Nanoparticles………………………………………… 22 2.3.1.1 Synthesis of Co Nanoparticles with Different Crystalline Modifications…………… 23 2.3.1.2 Synthesis of CoPt3 Magnetic Nanoparticles… 24 2.4 The FePt Magnetic Nanoparticles……………………… 27 2.4.1 The Characteristics of FePt Alloy…………….… 27 2.4.2 Organometallic Synthesis of FePt Magnetic Nanoparticles………………………………………… 28 2.4.3 Organization of Nanoparticles-Self Assembly ……………………………………….……… 29 Chapter 3 Experimental Section…………………………………..…… 31 3.1 Chemicals and Materials……………………………...…… 31 3.2 Experimental Apparatus ……………………….………… 34 3.3 Sample Preparation……………………………….………… 35 3.3.1 Synthesis of FePt Magnetic Nanoparticles with Various Surfactants………………………………….……… 35 3.3.1.1 Oleic acid / Oleylamine-capped FePt MNPs... 35 3.3.1.2 Oleic acid / Stearic acid-capped FePt MNPs... 36 Part I………………………………………………..…… 36 Part II………………………………………………….… 37 3.3.1.3 TOPO-capped FePt MNPs………………………… 38 3.3.1.4 Oleic acid / TOPO-capped FePt MNPs………… 38 3.3.1.5 TDPA / TOPO-capped FePt MNPs…………..… 39 3.3.2 Synthesis of FePt Magnetic Nanoparticles with Various Precursors……………………………………...…… 40 3.3.2.1 Fe(acac)2 as Precursor…………………………… 40 3.3.2.2 Fe(CO)5 as Precursor……………………………… 40 3.3.3 Seeding Synthesis of FePt MNPs………………………… 41 Part I. Oleic acid / Oleylamine-capped FePt MNPs…………………………………………….… 41 Part II. Oleic acid / Stearic acid-capped FePt MNPs…………………………………………….… 42 Part III Oleic acid / Stearic acid-capped FePt MNPs…………………………………………….… 43 3.3.4 Self-assembly of FePt Magnetic Nanoparticles…….. 44 3.3.5 Synthesis of Hydrophilic FePt Magnetic Nanoparticles…………………………………………………. 44 3.3.6 Labeling of cells with FePt MNPs………………….…… 45 3.3.7 MTT Assay……………………………………………...……… 45 3.3.8 One-Pot Synthesis of Heterodimers: A Conjugation of MNPs and QDs……………………………………………. 46 Chapter 4 Results and Discussion……………………………………… 48 4.1 Instrumentation……………………………………………… 48 4.1.1 Transmission Electron Microscope (TEM)…… 48 4.1.2 Powder X-ray Diffraction (XRD)…………….… 49 4.1.3 Superconducting Quantum Interference Device (SQUID) Magnetometer………………… 50 4.2 Preparation of FePt Magnetic Nanoparticles……… 52 4.2.1 Synthesis of FePt Magnetic Nanoparticles with Various Surfactants……………………………………….… 52 4.2.2 Synthesis of FePt Magnetic Nanoparticles with Various Precursors………………………………………….. 62 4.2.3 Seeding Synthesis of FePt MNPs………………………… 65 4.2.4 Self-assembly of FePt Magnetic Nanoparticles…….. 69 4.2.5 Synthesis of Hydrophilic FePt Magnetic Nanoparticles…………………………………………….…… 73 4.2.6 Labeling of Cells with FePt MNPs…………………….… 74 4.2.7 MTT Assay…………………………………………………...… 74 4.2.8 One-Pot Synthesis of Heterodimers: A Conjugation of MNPs and QDs ……………………………………………. 77 Chapter 5 Conclusions and Future Prospects ……………………… 83 Reference …………………………………………………………………..….. 86 Vita ……………………………………………………………………… 92

    1.1 There is Plenty of Room at the Bottom, Richard Feynman in The Pleasure of Finding Things Out, Perseus Books, 1999.
    1.2 Eugenii Katz and Itamar Willner, Angew. Chem. Int. Ed., 43, 6042 (2004).
    1.3 Gunter Schmid, “Nanoparticles, from theory to application”, WILEY-VCH (2004).
    1.4 Paulus, U. A.; Wokaun, A.; Scherer, G. G.; Schmidt, T. J.; Stamenkovic, V.; Radmilovic, V.; Markovic, N. M.; Ross, P. N.; J. Phys. Chem. B, 106, 4181 (2002).
    1.5 C. T. Black, C. B. Murray, R. L. Sandstrom, and Shouheng Sun, Science ; 290, 1131 (2000).
    1.6 R. Christopher Doty, Hongbin Yu, C. Ken Shih, and Brian A. Korgel, J. Phys. Chem. B., 105, 8291 (2001).
    1.7 Schmid, G.; Liu, Y.-P.; Schumann, M.; Raschke, T.; Radehaus, C.; Nano Lett., 1, 405 (2001).
    1.8 Raghuveer Parthasarathy, Xiao-Min Lin, and Heinrich M. Jaeger, Phys. Rev. Lett. 87, 186807 (2001).
    1.9 Shouheng Sun and C. B. Murray, J. Appl. Phys., 85, 4325 (1999).
    1.10 V. Russier, C. Petit, J. Legrand, and M. P. Pileni, Phys. Rev. B, 62, 3910 (2000).
    1.11 David A. van Leeuwen, J. M. van Ruitenbeek, and L. J. de Jongh, A. Ceriotti and G. Pacchioni, Phys. Rev. Lett. 73, 1432 (1994)
    1.12 F. Bødker, S. Mørup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994)
    1.13 Charles P. Poole Jr. and Frank J. Owens, “Introduction to Nanotechnology”, WILEY-VCH, 2003.
    1.14 Christof M. Niemeyer and Chad A. Mirkin, “Nanobiotechnology”, Wiley-VCH (2003).
    1.15 Marcel Bruchez Jr., Mario Moronne, Peter Gin, Shimon Weiss and A. Paul Alivisatos, Science, 281, 2013 (1998).
    1.16 Warren C., W. Chan and Shuming Nie, Science, 281, 2016 (1998).
    1.17 Benoit Dubertret, Michel Calame, and Albert J. Libchaber, Nat. Biotechnol., 19, 365 (2001.)
    1.18 Robert Elghanian, James J. Storhoff, Robert C. Mucic, Robert L. Letsinger, and Chad A. Mirkin, Science, 277, 1078 (1997).
    1.19 A. Jordan, R. Scholz, Magn. Mater., 201, 413 (1999).
    1.20 Lee Josephson, Ching-Hsuan Tung, Anna Moore, and Ralph Weissleder, Bioconjug. Chem., 10, 186 (1999)
    1.21 Adam Curtis and Chris Wilkinson, Trends Biotechnol., 19, 97 (2001).
    1.22 U. HWfeli, W. SchVtt, J. Teller, M. Zborowski, “Scientific and Clinical Applications of Magnetic Carriers”, Plenum Press, New York, 1997.
    1.23 Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, Andreas Moser, Science, 287, 1989 (2000).
    1.24 http://www.nsf.gov/od/lpa/priority/nano/nano_intro.htm
    2.1
    Gunter Schmid, “Nanoparticles, from theory to application”, WILEY-VCH (2004).
    2.2 Charles P. Poole Jr. and Frank J. Owens, “Introduction to Nanotechnology”, WILEY-VCH, 2003.
    2.3 Leslie-Pelecky, D. L.; Rieke, R. D.; Chem. Mater., 8; 1770 (1996).
    2.4 Ne´el, L. C. R. Acad. Sci., 224, 1488 (1947) (English translation: Kurti, N. Selected Works of Louis Ne´el; Gordon and Break Science Publishers: New York, 1988).
    2.5 Stoner, E. C.; Wohlfarth, E. P. Proc. Phys. Soc., 240, 599 (1948).
    2.6 Ne´el, L. C. R. Acad. Sci., 228, 664 (1949).
    2.7 S. Bucak, D. A. Jones, P. E. Laibinis, T. A. Hatton, Biotechnol. Prog., 19, 477 (2003).
    2.8 S. V. Sonti, A. Bose, J. Colloid Interface Sci., 170, 575 (1995).
    2.9 J. Roger, J. N. Pons, R. Massart, A. Halbreich, J. C.Bacri, Eur. Phys. J. Appl. Phys., 5, 321 (1999).
    2.10 Hongwei Gu, Pak-Leung Ho, Kenneth W. T. Tsang, Ling Wang, and Bing Xu, J. Am. Chem. Soc., 125, 15702 (2003).
    2.11 Hongwei Gu, Pak-Leung Ho, Kenneth WT Tsang, Chun-Wing Yua and Bing Xu, Chem. Commum., 1966 (2003).
    2.12 Hongwei Gu, Rongkun Zheng, Xi Xiang Zhang, and Bing Xu, J. Am. Chem. Soc., 126, 3392 (2004).
    2.13 S. Sun, C. B. Murray, J. Appl. Phys., 85, 4325 (1999).
    2.14 Dmitry P. Dinega and M. G. Bawendi, Angew. Chem. Int. Ed., 38, 1788 (1999).
    2.15 Victor F. Puntes, A. Paul Alivisatos, Science, 291, 2115 (2001).
    2.16 S. Sun, C. B. Murray, J. Appl. Phys., 85, 4325 (1999).
    2.17 Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H.; J. Am. Chem. Soc.; 124; 11480 (2002).
    2.18 Shevchenko, E. V.; Talapin, D. V.; Schnablegger, H.; Kornowski, A.; Festin, O.; Svedlindh, P.; Haase, M.; Weller, H.; J. Am. Chem. Soc.; 125; 9090 (2003).
    2.19 K. Inomata, T. Sawa, S. Hashimoto, J. Appl. Phys. 64, 2537 (1988).
    2.20 D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).
    2.21 K. R. Coffey, M. A. Parker, J. K. Howard, IEEE Trans. Magn. 31, 2737 (1995).
    2.22 N. Li and B. M. Lairson, IEEE Trans. Magn. 35, 1077 (1999).
    2.23 R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey, J. K. Howard, J. Appl. Phys. 86, 4527 (1999).
    2.24 Robert F. Service, Science, 287, 1902 (2000).
    2.25 Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, Andreas Moser, Science, 287, 1989 (2000).
    2.26 H. Doyle, Mat. Res. Soc. Symp. Proc. 577, 385 (1999).
    4.1 http:/ /nobelprize.org/physics/educational/microscopes/tem/
    4.2 http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/bragg.html#c2
    4.3 http://140.112.102.45/lab-system.htm
    4.4 Shouheng Sun, C. B. Murray, Dieter Weller, Liesl Folks, Andreas Moser, Science, 287, 1989 (2000).
    4.5 Fertman, V. E., “Magnetic Fluids Guidebook: Properties and Applications”; Hemisphere Publishing Co.: New York, 1990.
    4.6 Ivo Mekis, Dmitri V. Talapin, Andreas Kornowski, Markus Haase, and Horst Weller, J. Phys. Chem. B, 107, 7454 (2003).
    4.7 Z. Adam Peng and Xiaogang Peng, J. Am. Chem. Soc., 124, 3343 (2002).
    4.8 M. Hanson, C. Johansson, M. S. Pedersen, S. Mørup, J. Phys. Condens. Matter, 7, 9269 (1995).
    4.9 (a) P. C. Ohara, J. R. Heath, and W. M. Gelbart, Angew. Chem. 109, 119 (1997). (b) P. C. Ohara, J. R. Heath, and W.M. Gelbart, Angew. Chem. Int.Ed. Engl., 36, 1078 (1997).
    4.10 A. P. H. J. Schenning, F. B. G. Benneker, H. P. M. Geurts, X. Y. Liu, and R. J. M. Nolte, J. Am. Chem. Soc., 118, 8549 (1996).
    4.11 J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. T. Tans, and C. Dehher, Nature (London), 285, 781 (1997).
    4.12 Hongwei Gu, Pak-Leung Ho, Kenneth WT Tsang, Chun-Wing Yua and Bing Xu, Chem. Commum., 1966 (2003).
    4.13 Hongwei Gu, Pak-Leung Ho, Kenneth W. T. Tsang, Ling Wang, and Bing Xu,
    J. Am. Chem. Soc., 125, 15702 (2003).
    4.14 Hongwei Gu, Rongkun Zheng, Xi Xiang Zhang, and Bing Xu, J. Am. Chem. Soc., 126, 3392 (2004).
    4.15 Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc., 115, 8706 (1993).

    無法下載圖示
    QR CODE