簡易檢索 / 詳目顯示

研究生: 陳奕杰
論文名稱: 一、硝基乙酸烯丙酯之Feist-Bénary加成脫去反應的探討 二、苯炔與烯類化合物之[2+2]環化加成反應
指導教授: 陳焜銘
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 46
中文關鍵詞: 硝基乙酸烯丙酯Feist-Bénary加成-脫去反應多取代呋喃苯炔[2+2]環化反應
英文關鍵詞: nitroallylic acetate, Feist–Bénary addition–elimination, tetrasubstituted furan, Benzyne, [2+2]cyclization
論文種類: 學術論文
相關次數: 點閱:198下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩部分,第一部分為多取代呋喃化合物之合成反應,第二部分為利用苯炔高活性中間體,進行[2+2]環化加成反應。
      第一部分:多取代呋喃的衍生物,常是天然物分子具有的結構,並於藥物分子開發占有重要的角色。利用本實驗室製備的硝基乙酸烯丙酯48a為起始物,和1,3-雙羧基化合物或α位有拉電子基的酮化合物,在乙腈作為反應溶劑,碳酸銫為鹼試劑。在溫和條件下,進行Feist-Bénary加成-脫去反應,經過分子內SN2'反應,合成多取代呋喃化合物,得到良好的產率(32-99%)。並探討不同官能基的起始物對產率的影響及反應機構的研究。
      第二部分:苯炔為高活性反應中間體,常用於有機合成、反應機構探討,功能性材料的合成。以鄰位三甲基矽基-芳香族羥基三氟甲磺酸11為苯炔前驅物,使用不同雙鍵官能基化合物,氟化銫提供氟離子,乙腈作為反應溶劑,在室溫下進行[2+2]環化反應,成功得到[2+2]環化產物,並獲得良好的產率(29-76%)。

    This dissertation is divided into two parts, Part 1 is efficient synthesis of tetrasubstituted furans. In part 2, [2+2]cyclization been activated by benzyne as a reactive intermediate.
      Part 1:tetrasubstitutited furans represent an important role that have been used for the synthesis of many pharmaceutical molecules and natural products. We present herein an efficient synthetic strategy for accessing tetrasubstituted furans that exploits a Feist–Bénary type reaction between electron-deficient nitroallylic acetate 48a and 1,3-dicarbonyl/α-activating ketones in CH3CN, Cs2CO3 was employed as a base. The corresponding multifunctional tetrasubstituted furans were typically obtained in respectable to excellent yield (52–99%) via an interesting SN2’ addition–elimination sequence that proceeds under very mild reaction conditions. Next, studied the feasibility and scope of our new reaction with various startingmaterials and substituted nitroallylic acetates.
      Part 2:Benzyne is a highly reactive intermediate and its substituted variants in
    the total synthesis of natural products. The [2+2] cycloaddition of alkenes and benzyne, apply o-(trimethylsilyl)aryl triflate as benzyne precussor, CsF provided the fluoride ion. generated the corresponding [2+2] cycloadducts in CH3CN, with moderate to good yield (29-76%).

    keywords : nitroallylic acetate, Feist–Bénary addition–elimination, tetrasubstituted furan, Benzyne, [2+2]cyclization

    第一章 硝基乙酸烯丙酯之Feist-Bénary加成脫去反應的探討 1-1 導論………………………………………………..…………………........…….5 1-1-1 多取代呋喃的背景及應用……………………………………………...5 1-1-2 呋喃的歷史及合成形式之介紹………………….…….......6   1-1-2-1 呋喃分子直接官能基化反應……………………………….……6 1-1-2-2 Paal-Knorr合成反應…………………………....…………7   1-1-2-3 Feist-Bénary合成反應………………………………………..8   1-1-2-4 過渡金屬催化反應......................9   1-1-2-5 其他多取代呋喃合成反應…………………………..…12 1-1-3 研究動機………………………………………………………….......…..14 1-2 實驗結果與討論……………………………………………………......……..…15  1-2-1 鹼試劑效應的探討…………………………………………..……...…..15 1-2-2 溶劑效應的探討………………………………………………….....…….17 1-2-3 其他酮類化合物對不同官能基之硝基乙酸烯丙酯的效應………….18 1-2-4 反應機構的探討……………………………………………………….22 1-2-5 結論…………………………………………………………………….24 1-3 參考文獻…………………………………………………....………………….25 第二章 苯炔與烯類化合物之[2+2]環化加成反應 2-1 導論………………………………………………..…………………………...27 2-1-1 苯炔的背景及歷史介紹……………………………………………….27 2-1-2 苯炔合成之形式介紹………………………………………………….28 2-1-3 苯炔的反應形式之介紹………………………………………….....31   2-1-2-1 親核加成反應……………....…………………………………..31 2-1-2-2 過渡金屬催化反應..…………………………………..………..34   2-1-2-3 周環反應……………………………….…...……….……………34 2-1-4 研究動機……………………………………………….……………….36 2-2 實驗結果與討論………………………………………...………..37  2-2-1 溶劑效應的探討……………………………………………………….37 2-2-2 反應物當量比效應的探討…………………………………………….38 2-2-3 添加劑效應的探討…………………………………………………….39 2-2-4 鹼添加劑當量效應的探討……………………....………....……….40 2-2-5 不同起始物對[2+2]環化反應的效應…………………………………41 2-2-6 結論…………………………………………………………………….43 2-3 參考文獻……………………………………………………………………….44

    1-3 參考文獻
    (1) a) A. Fürstner, H. Weintritt, J. Am. Chem. Soc. 1998, 120, 2817; b) A. Fürstner, K. Reinecke, H. H. Waldmann, ChemBioChem. 2004, 5, 1575.
    (2) T. Pacher, C. Seger, D. Engelmeier, S. Vajrodaya, O. Hofer, H. Greger, J. Nat. Prod. 2002, 65, 820.
    (3) K. H. Lee, K. F. Bastow, Y. Dong, Q. Shi, Y. N. Liu, X. Wang, J. Med. Chem. 2009, 35, 3586.
    (4) J. A. Parrish, T. B. Fitzpatrick, L. Tanenbaum, N. Engl. J. Med. 1974, 291, 1207.
    (5) a) Y. Miyata, T. Nishinaga, K. Komatsu, J. Org. Chem. 2005, 70, 1147; b) F. Ferrero, L. Napoli, C. Tonin, A. Varesano, J. Appl. Polym. Sci. 2006, 102, 4121.
    (6) H. Limpricht, Berichte der deutschen chemischen Gesellschaft. 1870, 3, 90.
    (7) V. Snieckus, Chem. Rev. 1990, 90, 879
    (8) B. H. Lipshutz, W. Hagen, Tetrahedron Lett. 1992, 33, 5865.
    (9) H. Ila, O. Baron, A. J. Wagner, P. Knochel, Chem. Commun. 2006, 583.
    (10) a) C. Paal, Chem. Ber., 1884, 17, 2756. b) L. Knorr, Chem. Ber., 1884, 17, 2863.
    (11) a) F. Feist, Chem. Ber., 1902, 35, 1537. b) E. Bénary, Chem. Ber., 1911, 44, 489.
    (12) A. V. Kelín, V. Gevorgyan, J. Org. Chem. 2002, 67, 95.
    (13) X. Han, R. A. Widenhoefer, J. Org. Chem. 2004, 69, 1738.
    (14) T. Yao, X. Zhang, R. C. Larock, J. Am. Chem. Soc. 2004, 126, 164.
    (15) C.-K. Jung, J. C. Wang, M. J. Krische, J. Am. Chem. Soc. 2004, 126, 4118.
    (16) T.-T. Kao, S.-e. Syu, Y.-W. Jhang, W. Lin, Org. Lett. 2010, 12, 3066.
    (17) a) Y. Zhang, Z. Chen, Y. Xiao, J. Zhang, Chem. Eur. J. 2009, 15, 5208; b) J. Zhang, H.-G. Schmalz, Angew. Chem. 2006, 118, 6856.
    (18) J. Barluenga, L. Riesgo, R. Vicente, L. A. Lόpez, M. Tomás, J. Am. Chem. Soc. 2008, 130, 13528
    (19) A. S. Dudnik, V. Gevorgyan, Angew. Chem. 2007, 119, 5287.
    (20) R. J. Reddy, K. Chen, Org. Lett. 2011, 13, 1548.
    (21) I. Deb, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri, Org. Lett. 2006, 8, 1201.
    (22) J. E. Baldwin, J. C. S. Chem. Commun. 1976, 734.

    2-3 參考文獻
    (1) R. Stoermer, B. Kahlert, Ber. Dtsch. Chem. Ges. 1902, 35, 1633.
    (2) W. E. Bachman, H. T. Clarke, J. Am. Chem. Soc. 1927, 49, 2089.
    (3) a) G.Wittig, Naturwissenschaften. 1942, 30, 696; b) G.Wittig, G. Harborth, Ber. Dtsch. Chem. Ges. 1944, 77, 306, 316; c) G. Wittig, L. Pohmer, Chem. Ber. 1956, 89, 1334.
    (4) a) J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C.W. Vaughan, J. Am. Chem. Soc. 1953, 75, 3290; b) J. D. Roberts, D. A. Semenow, H. E. Simmons, L. A. Carlsmith, J. Am. Chem. Soc. 1956, 78, 601, 611; c) M. Panar, J. D. Roberts, J. Am. Chem. Soc. 1960, 82, 3629.
    (5) a) O. L. Chapman, K. Mattes, C. L. McIntosh, J. Pacansky,G. V. Calder, G. Orr, J. Am. Chem. Soc. 1973, 95, 6134; b) O. L. Chapman, C. C. Chang, J. Kolc, N. R. Rosenquist, H. Tomioka, J. Am. Chem. Soc. 1975, 97, 6586; c) I. R. Dunkin, J. G. MacDonald, J. Chem. Soc. Chem. Commun. 1979, 772; d) C. Wentrup, R. Blanch, H. Briehl, G. Gross, J. Am. Chem. Soc. 1988, 110, 874; e) J. W. Laing, R. S. Berry, J. Am. Chem. Soc. 1976, 98, 660; f) N.-H. Nam, G. E. Leroi, Spectrochim. Acta A 1985, 41, 67; g) A. C. Scheiner, H. F. Schaefer III, B. Liu, J. Am. Chem. Soc. 1989, 111, 3118;
    (6) a) R. Warmuth, Angew. Chem. 1997, 109, 1406; Angew. Chem. Int. Ed. Engl. 1997, 36, 1347; b) R. Warmuth, Eur. J. Org. Chem. 2001, 423; c) R. Warmuth, J. Yoon, Acc. Chem. Res. 2001, 34, 95.
    (7) K. C. Caster, C. G. Keck, R. D. Walls, J. Org. Chem. 2001, 66, 2932.
    (8) T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, Tetrahedron Lett. 1991, 32, 6735.
    (9) P. P. Wickham, K. H. Hazen, H. Guo, G. Jones, K. H. Reuter, W. J. Scott, J. Org. Chem. 1991, 56, 2045
    (10) a) C. D. Campbell, C. W. Rees, J. Chem. Soc. 1969, 742–747. see also pp 748-751, 752–756. b) L. Friedman, F. M. Logullo, J. Am. Chem. Soc. 1963, 85, 1792.
    (11) L. Friedman, F. M. Logullo, J. Org. Chem.; 1969, 34, 3089.
    (12) a) T. Kitamura, M. Yamane, J. Chem. Soc.; Chem. Commun. 1995, 983. b) T.; Kitamura, M. Yamane, K. Inoue, M. Todaka, N. Fukatsu, Z-H. Meng, Y. Fujiwara, J. Am. Chem. Soc. 1999, 121, 11674.
    (13) Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 1211.
    (14) S. P. Khanapure, E. R. Biehl, J. Org. Chem. 1990, 55, 1471.
    (15) V. Snieckus, Chem. Rev.1990, 90, 879.
    (16) A. Kunai, H. Yoshida, H. Fukushima, J. Ohshita, J. Am. Chem. Soc. 2006, 128, 11040.
    (17) B. M. Stoltz, U. K. Tambar, J. Am. Chem. Soc. 2005, 127, 5430.
    (18) L. Castedo, D. Peńa, S. Escudero, D. Pérez, E. Guitián, Angew. Chem. Int. Ed. Engl. 1998, 37, 2659.
    (19) Y. Yamamoto, K. V. Radhakrishnan, E. Yoshikawa, Tetrahedron Lett. 1999, 40, 7533.
    (20) S. E. Whitney, M. Winters, B. Rickborn, J. Org. Chem., 1990,55, 929.
    (21) G. Martín, E. Guitiín, L. Castedo, J. M. Saá, Tetrahedron Let. 1987, 28, 2407.
    (22) E. C. Taylor, D. M. Sobieray, Tetrahedron. 1991, 47, 9599.
    (23) E. R. Biehl, S. P. Khanapure, B. M. Bhawal, Tetrahedron Lett. 1990, 31, 2869.
    (24) A. A. Aly, N. K. Mohamed, A. A. Hassan, A. F. E. Mourad, Tetrahedron. 1999, 55, 1111.
    (25) J. B. Feltenberger, R. Hayashi, Y. Tang, E. S. C. Babiash, R. P. Hsung, Org. Lett. 2009, 11, 3666.
    (26) a) D. Peña, A. Cobas, D. Pérez, E. Guitián, Synthesis 2002, 1454. b) I. Quintana, A. J. Boersma, D. Peña, D. Perez, E. Guitián, Org. Lett. 2006, 15, 3347. c) J. Caeiro, D. Peña, A. Cobas, D. Perez, E. Guitián, Adv. Synth. Catal. 2006, 348, 2466. d) H. M. Duong, M. Bendikov, D. Steiger, Q. Zhang, G. Sonmez, J. Yamada, F. Wudl, Org. Lett. 2003, 5, 4433. e) C.Kitamura, Y. Abe, T. Ohara, A. Yoneda, T. Kawase, T. Kobayashi, H. Naito, T. Komatsu, Chem.-Eur. J. 2010, 16, 880.

    下載圖示
    QR CODE