簡易檢索 / 詳目顯示

研究生: 李震昱
Lee, Chen-Yu
論文名稱: 高目標演化演算法中參考點之探究
A Study on Reference Points in Many-Objective Evolutionary Algorithms
指導教授: 蔣宗哲
Chiang, Tsung-Che
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 演化式多目標最佳化高目標最佳化演化演算法參考點
DOI URL: http://doi.org/10.6345/THE.NTNU.DCSIE.005.2018.B02
論文種類: 學術論文
相關次數: 點閱:210下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多目標最佳化問題是近年演化計算領域裡熱門的研究主題,我們的日常生活周遭也充滿了多目標最佳化的問題:想要吃得好又想要錢花得少、想用較少的次數搬完東西但是又不想太費力,許多事都可以用多目標最佳化的角度來思考,其中目標數更多更複雜的高目標最佳化問題在近年獲得了許多關注,如何設計出有效率並且效能良好的高目標最佳化演化演算法已經成為了近年重要的課題。
    近年發表的 NSGA-III 與 VaEA 在高目標最佳化問題都有優秀的表現,本論文對這二個演算法進行分析與討論,並嘗試不同的參考點策略來進行改良:使用 IPBI 函數改變搜尋行為,使其能在參考點分布與問題前緣形狀不符合的時候仍然有能力搜尋到最佳解;改變 VaEA 演算法的初始參考點策略,使其能夠獲得更佳的極限值;將 VaEA 的動態參考點概念與環境選擇機制與 NSGA-III 結合成新的混合演算法。實驗結果也顯示我們嘗試的各種參考點策略能夠根據問題有效改善演算法的效能。

    目錄 中文摘要 i 目錄 iii 附表目錄 iv 附圖目錄 v 第一章 緒論 1 1.1 研究動機 1 1.2 背景知識 1 1.2.1 多目標最佳化問題定義 1 1.2.2 演化演算法 3 1.3 研究目的與方法 5 1.4 論文架構 6 第二章 文獻探討 7 2.1 多目標最佳化演化演算法 7 2.2 求解高目標最佳化問題面臨的挑戰與方向 10 2.3 基於參考點的高目標演化演算法 14 第三章 基於參考點的高目標演化演算法與探討 16 3.1 NSGA-III 16 3.1.1 初始化階段 17 3.1.2 繁殖階段 19 3.1.3 環境選擇 20 3.2 VaEA 21 3.2.1 初始化階段 22 3.2.2 繁殖階段 22 3.2.3 環境選擇 23 3.3 演算法探討 26 3.3.1 NSGA-III的待改進處 26 3.3.2 VaEA的待改進處 27 3.4 參考點生成策略之探究與改良 28 3.4.1 NSGA-III 28 3.4.2 VaEA 30 第四章 實驗結果與分析 31 4.1 測試問題 31 4.2 參數設定 31 4.3 效能指標 32 4.4 結果與討論 33 第五章 結論與未來研究方向 46 參考文獻 47

    英文文獻
    H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short review,” Proceedings of IEEE Congress on Evolutionary Computation, pp. 2419–2426, June. 2008.

    O. Chikumbo, E. D. Goodman, and K. Deb, “Approximating a multidimensional Pareto front for a land use management problem: A modified moea with an epigenetic silencing metaphor,” in CEC’12: Proc. of the 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1–9.

    G. Fu, Z. Kapelan, J. R. Kasprzyk, and P. Reed, “Optimal design of water distribution systems using many-objective visual analytics,” Journal of Water Resources Planning and Management, vol. 139, no. 6, pp. 624–633, 2013.

    K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex Systems, vol. 9, pp. 115–148, April 1995.

    K. Deb and H. Jain, “An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: Solving problems with box constraints,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2014.

    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

    H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance of decomposition-based many-objective algorithms strongly depends on Pareto front shapes,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp. 169–190, Apr. 2017.

    Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based evolutionary algorithm for unconstrained many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 1, pp. 131–152, Feb. 2017.

    E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization,” in Evolutionary Methods for Design, Optimisation, and Control, pp. 95–100, 2002.

    E. Zitzler and S. K¨unzli, “Indicator-based selection in multiobjective search,” in PPSN’04: Proc. of the 8th International Conference on Parallel Problem Solving from Nature, 2004, pp. 832–842.

    N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection based on dominated hypervolume,” European Journal of Operational Research, vol. 181, no. 3, pp. 1653–1669, 2007.

    E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

    Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposition,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

    Q. Zhang, W. Liu, and H. Li, “The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances,” in Proc. IEEE Congr. Evol. Comput. (CEC), Trondheim, Norway, 2009, pp. 203–208.

    A. Zhou and Q. Zhang, “Are all the subproblems equally important? Resource allocation in decomposition-based multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 52–64, 2016.

    S. Jiang, Z. Cai, J. Zhang, and Y. Ong, “Multiobjective optimization by decomposition with pareto-adaptive weight vectors,” Natural Computation (ICNC), 2011 Seventh International Conference on, vol. 3, pp. 1260–1264.

    F. Gu, H. Liu, and K. C. Tan, “A multiobjective evolutionary algorithm using dynamic weight design method,” International Journal of Innovative Computing, Information and Control, vol. 8, no. 5(B), pp3677–3688, May, 2012.

    Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive weight adjustment,” Evolutionary Computation, vol. 22, no. 2, pp.231–264, 2014.

    K. Li, Q. Zhang, S. Kwong, M. Li, and R. Wang, “Stable matching-based selection in evolutionary multiobjective optimization,” IEEE Trans. Evolutionary Computation, vol. 18, no. 6, pp. 909–923, 2014.

    M. Wu, S. Kwong, Q. Zhang, K. Li, R. Wang, and B. Liu, “Two-level stable matching-based selection in MOEA/D,” in SMC’15: Proc. of the 2015 IEEE International Conference on Systems, Man, and Cybernetics, 2015, pp. 1720–1725.

    Z. Wang, Q. Zhang, and A. Zhou, “Adaptive replacement strategies for MOEA/D,” IEEE Transactions on Cybernetics, vol. 46, no. 2, pp. 474–486, Feb, 2016.

    K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary manyobjective optimization algorithm based on dominance and decomposition,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 5, pp. 694–716, Oct. 2015.

    R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization of many conflicting objectives,” IEEE Transactions on Evolutionary Computation, vol. 11, no. 6, pp. 770–784, 2007.

    R. L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for calculating hypervolume,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 1, pp. 29–38, 2006.

    M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining convergence and diversity in evolutionary multiobjective optimization,” Evolutionary Computation, vol. 10, no. 3, pp. 263–282, 2002.

    S. Yang, M. Li, X. Liu, and J. Zheng, “A grid-based evolutionary algorithm for many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 5, pp. 721–736, Oct. 2013.

    H. Liu, F. Gu, and Q. Zhang, “Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp. 450–455, 2014.

    S. F. Adra and P. J. Fleming, “Diversity management in evolutionary many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 2, pp. 183–195, 2011.

    M. Li, S. Yang, and X. Liu, “Shift-based density estimation for paretobased algorithms in many-objective optimization,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp. 348–365, 2014.

    L. B. Said, S. Bechikh, and K. Ghedira, “The r-dominance: A new dominance relation for interactive evolutionary multicriteria decision making, ” IEEE Transactions on Evolutionary Computation, vol. 14, no. 5, pp. 801–818, Oct. 2010.

    D. K. Saxena, J. A. Duro, A. Tiwari, K. Deb, and Q. Zhang, “Objective reduction in many-objective optimization: Linear and nonlinear algorithms,” IEEE Transactions on Evolutionary Computation, vol. 17, no. 1, pp. 77–99, 2013.

    H. L. Liu, L. Chen, Q. Zhang, and K. Deb, “Adaptively allocating search effort in challenging many-objective optimization problems,” IEEE Transactions on Evolutionary Computation, 2017, in press,DOI:10.1109/TEVC.2017.2725902.

    I. Das and J. E. Dennis, “Normal-Boundary Intersection: A new method for generating the pareto surface in nonlinear multicriteria optimization problems,” SIAM Journal on Optimization, vol. 8, pp. 631–657, 1998.

    H. Sato, “Analysis of inverted PBI and comparison with other scalarizing functions in decomposition based MOEAs,” Journal of Heuristics vol. 21, no. 6, pp. 819-849, Dec, 2015.

    K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multi-objective optimization,” in Evolutionary Multiobjective Optimization, A. Abraham, L. Jain, and R. Goldberg, Eds. London, U.K.: Springer-Verlag, 2005, pp. 105–145.

    D. A. Van Veldhuizen and G. B. Lamont, “Evolutionary computation and convergence to a Pareto front,” in Proceedings of the Genetic Programming Conference, 1998, pp. 221–228.

    P. A. N. Bosman and D. Thierens, “The balance between proximity and diversity in multiobjective evolutionary algorithms,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 2, pp. 174–188, Apr. 2003.

    下載圖示
    QR CODE