簡易檢索 / 詳目顯示

研究生: 吳宮頡
Wu, Kung-Chieh
論文名稱: 一條根萃取物活性成分改善環磷醯胺誘導膀胱功能障礙與病理機制之大鼠模式
I-Tiao-Gung Extract through its Active Component Improves Cyclophosphamide-Induced Bladder Dysfunction and Mechanisms in Rat Model
指導教授: 鄭劍廷
Chien, Chiang-Ting
學位類別: 博士
Doctor
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 69
中文關鍵詞: 一條根黃豆戒膀胱過動環磷醯胺蕈鹼受體嘌呤受體氧化壓力
英文關鍵詞: I-Tiao-Gung, daidzin, overactive bladder, cyclophosphamide, muscarinic receptor, purinergic receptor, oxidative stress
DOI URL: http://doi.org/10.6345/NTNU202000039
論文種類: 學術論文
相關次數: 點閱:198下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一條根(I-Tiao-Gung)在金門當地已經普遍被廣泛使用於治療風濕性疾病以及痠痛之傳統中草藥。而金門一條根屬於豆科植物的闊葉大豆(Glycine tomentella Hayata),且豐含天然植物雌激素黃酮類及酚類物質,有研究指出一條根具有抗發炎及抗氧化能力之功效。
    膀胱過動症(OAB)是一種很常見且又很容易被忽略的疾病。膀胱過動症的起因是由多重因素所造成的,如尿道出口阻塞、細菌感染及尿路上皮受損等症狀,在病生理學上,當膀胱過動症確診後,會引起尿道損傷及慢性發炎的症狀。環磷醯胺(Cyclophosphamide, CYP)是一種化療藥物,具有高毒活性代謝物,在尿液中對膀胱產生急性或慢性之損傷,包含出血性膀胱炎。我們使用環磷醯胺腹腔注射誘導膀胱過動症的大鼠模式,當膀胱發炎時機械敏感性的傳入神經變得較敏感,將導致膀胱過動(Bladder hyperactivity)。膀胱發炎會引起活性氧(ROS)的產生,而活性氧是氧化壓力形成的原因之一,且其最終可能會導致膀胱功能障礙。
    因此,我們探究內服給予中藥一條根萃取物中黃豆戒(Daidzin)活性成分對環磷醯胺誘導膀胱炎、氧化壓力、纖維化和發炎及膀胱過動症之治療潛力。本研究使用Wistar 大鼠,其CYP給予方式為腹腔注射,一條根及黃豆戒為口服管餵方式。我們透過西方墨點法檢測,蕈鹼受體M2和M3和P2X2和P2X3嘌呤能受體以及3-硝基酪氨酸(3-NT)和NADPH氧化酶4(NOX4)的表現,以及動物膀胱內壓與尿道外括約肌電圖相關之檢測。此外,我們透過超靈敏化學發光分析儀,從而確定了膀胱活性氧(ROS)的量,以及透過細胞因子陣列來確認多種細胞因子譜的表現包含在內的MMP-8和TIMP-1。我們結果顯示,一條根萃取中黃豆戒活性成可有效改善環磷醯胺誘導膀胱炎和恢復第二階段的活性作用(EUS-EMG),並抑制P2X2,P2X3,M3受體,3-NT,NOX4的表達。結論,一條根萃取成分和其主要活性成分黃豆戒可降低環磷醯胺誘導氧化壓力且可抑制環磷醯胺造成之MMP-8、TIMP-1、發炎和纖維化。

    I-Tiao-Gung (ITG) is a traditional Chinese herbal medicine which has been widely used in the treatment of rheumatic diseases and soreness in Kinmen. The ITG belongs to Glycine tomentella Hayata, a family of soybean rich in natural phytoestrogens, such as flavonoids and phenolic substances. Studies have pointed out that ITG has anti-inflammatory and antioxidant effects.
    Overactive bladder (OAB), a very common disease but easily being ignored, is formed by multiple factors, including urethral obstruction, bacterial infection and urinary tract epithelial damage. In pathophysiology, once OAB is confirmed, it could further lead to urethral injury and chronic inflammation. Cyclophosphamide (CYP), a chemotherapeutic agent, but has highly toxic metabolites that cause acute or chronic damage to the bladder, inducing hemorrhagic cystitis. We used intraperitoneal injection of CYP to induce the bladder hyperactivity and inflammation in rats based on its harm for bladder as previously described. Mechanical sensitization of the afferent nerve becomes higher when bladder inflammation occurs, and then leads to bladder hyperactivity. Bladder inflammation causes the production of reactive oxygen species (ROS), the main character in oxidative stress, and might eventually lead to bladder dysfunction and fibrosis.
    Therefore, we explored the therapeutic potential of intragastric administration traditional Chinese medicine ITG extract and its active component Daidzin on CYP-induced cystitis, oxidative stress, fibrosis, inflammation and bladder hyperactivity in rats. In this study, CYP was intraperitoneal injected to Wistar rats and ITG or Daidzin was administrated by oral gavage. We determined the transcystometrogram associated with external urethral sphincter electromyogram, and the expression of M2, M3 muscarinic, P2X2, P2X3 purinergic receptors, 3-nitrotyrosine (3-NT) and NADPH oxidase 4 (NOX4) by Western blot in rats. In addition, we determined the bladder reactive oxygen species (ROS) amounts by an ultrasensitive chemiluminescence analyzer, the expression of multiple cytokine profiles including MMP-8 and TIMP-1 via cytokine array. In conclusion, these data suggest that ITG extract through its active component Daidzin effectively improved CYP-induced cystitis by the action of restoring Phase 2 activity(EUS-EMG)and inhibiting the expressions of P2X2, P2X3, M3 receptors, 3-NT, NOX4 and, oral intake ITG or Daidzin improved CYP-induced oxidative stress, inflammation and fibrosis through inhibiting the MMP-8, TIMP-1 and oxidative stress.

    中文摘要 X Abstract XII Abbreviation XIV Chapter 1. Introduction and Literature review 1 1-1 Traditional Chinese Medicince of I-Tiao-Gung 2 1-2 CYP-induced cystitis and bladder dysfunction 2 1-3 Research Aims 5 Chapter 2. Materials and Methods 7 2-1 I-Tiao-Gung 8 2-2 Preparation of I-Tiao-Gung extract 8 2-3 HPLC analysis 8 2-4 Animals 9 2-5 ITG and Daidzin given dose 10 2-6 Antioxidant activity of ITG, Daidzin and Daidzein 10 2-7 CYP-induced cystitis and bladder hyperactivity 11 2-8 Transcystometric model 11 2-9 Recording of extraurethral sphincter-electromyogram (EUS-EMG) activity 11 2-10 In vitro and in vivo chemiluminescence recording for ROS activity 12 2-11 Western blot 12 2-12 Multiple cytokine antibody arrays 13 2-13 Histology 13 2-14 Statistical Analysis 14 Chapter 3. Results 15 3-1 ITG-HPLC analysis 16 3-2 The effect of ITG on voiding parameters 16 3-3 The effect of ITG and bladder hyperactivity 17 3-4 The effect of ITG on voiding cycle and EMG activity 18 3-5 The effect of ITG on purinergic receptors 18 3-6 The effect of ITG on muscarinic receptors 19 3-7 The effect of ITG and bladder inflammatory and fibrosis and MDA 19 3-8 The effect of ITG and purinergic and muscarinic receptors and mast cell and hematuria 20 3-9 In vivo chemiluminescence recording for bladder ROS parameters 21 3-10 The effect of ITG on 3-NT and NOX4 21 3-11 Cytokine array 22 Chapter 4. Discussion and Conclusions 23 4-1 The treatment of ITG and Daidzin on CYP-induced bladder hyperactivity 24 4-2 The effect of ITG and Daidzin on CYP-induced voiding dysfunction and EUS-EMG activity 25 4-3 The effect of CYP-induced bladder hyperactivity in purinergic receptors and protein expression 26 4-4 The effect of CYP-induced bladder hyperactivity in muscarinic receptors and protein expression 27 4-5 Effect of CYP-induced bladder inflammation triggered 3-NT or NOX4 expression and ROS accumulation 28 4-6 Effect of CYP-induced bladder inflammation triggered MMP-8 or TIMP-1 expression 29 4-7 Conclusions 31 4-8 Future Works 32 Reference 33 Figure Contents 46

    1. Yen JH, Yang DJ, Chen MC, Hsieh YF, Sun YS, Tsay GJ. Glycine tomentella Hayata inhibits IL-1beta and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells. J Biomed Sci. 2010;17:83.
    2. Okada S, Kojima Y, Hamamoto S, Mizuno K, Sasaki S, Kohri K. Dietary soy isoflavone replacement improves detrusor overactivity of ovariectomized rats with altered connexin-43 expression in the urinary bladder. BJU Int. 2009;103(10):1429-1435.
    3. Farshid AA, Tamaddonfard E, Ranjbar S. Oral administration of vitamin C and histidine attenuate cyclophosphamide-induced hemorrhagic cystitis in rats. Indian J Pharmacol. 2013;45(2):126-129.
    4. Levine LA, Richie JP. Urological complications of cyclophosphamide. J Urol. 1989;141(5):1063-1069.
    5. Irwin DE, Milsom I, Hunskaar S, et al. Population-based survey of urinary incontinence, overactive bladder, and other lower urinary tract symptoms in five countries: results of the EPIC study. Eur Urol. 2006;50(6):1306-1314; discussion 1314-1305.
    6. Coyne KS, Sexton CC, Irwin DE, Kopp ZS, Kelleher CJ, Milsom I. The impact of overactive bladder, incontinence and other lower urinary tract symptoms on quality of life, work productivity, sexuality and emotional well-being in men and women: results from the EPIC study. BJU Int. 2008;101(11):1388-1395.
    7. Abrams P, Cardozo L, Fall M, et al. The standardisation of terminology in lower urinary tract function: report from the standardisation sub-committee of the International Continence Society. Urology. 2003;61(1):37-49.
    8. Wein AJ. Re: the prevalence of lower urinary tract symptoms (LUTS) and overactive bladder (OAB) by racial/ethnic group and age: results from OAB-POLL. J Urol. 2014;191(5):1340-1342.
    9. Rechberger T, Kulik-Rechberger B, Miotla P, Wrobel A. [The new era in the pharmacological treatment of overactive bladder (OAB): mirabegron--a new selective beta3agonist]. Ginekol Pol. 2014;85(3):214-219.
    10. Meng E, Lin WY, Lee WC, Chuang YC. Pathophysiology of Overactive Bladder. Low Urin Tract Symptoms. 2012;4 Suppl 1:48-55.
    11. Drake MJ. Do we need a new definition of the overactive bladder syndrome? ICI-RS 2013. Neurourol Urodyn. 2014;33(5):622-624.
    12. Andersson KE, Hedlund P. Pharmacologic perspective on the physiology of the lower urinary tract. Urology. 2002;60(5 Suppl 1):13-20; discussion 20-11.
    13. Chien CT, Yu HJ, Lin TB, Chen CF. Neural mechanisms of impaired micturition reflex in rats with acute partial bladder outlet obstruction. Neuroscience. 2000;96(1):221-230.
    14. Smith CP, Vemulakonda VM, Kiss S, Boone TB, Somogyi GT. Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem Int. 2005;47(4):291-297.
    15. Birder LA, Ruan HZ, Chopra B, et al. Alterations in P2X and P2Y purinergic receptor expression in urinary bladder from normal cats and cats with interstitial cystitis. Am J Physiol Renal Physiol. 2004;287(5):F1084-1091.
    16. Ford AP, Gever JR, Nunn PA, et al. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br J Pharmacol. 2006;147 Suppl 2:S132-143.
    17. Witthaus MW, Nipa F, Yang JH, Li Y, Lerner LB, Azadzoi KM. Bladder oxidative stress in sleep apnea contributes to detrusor instability and nocturia. J Urol. 2015;193(5):1692-1699.
    18. Nomiya M, Andersson KE, Yamaguchi O. Chronic bladder ischemia and oxidative stress: new pharmacotherapeutic targets for lower urinary tract symptoms. Int J Urol. 2015;22(1):40-46.
    19. Capolicchio G, Aitken KJ, Gu JX, Reddy P, Bagli DJ. Extracellular matrix gene responses in a novel ex vivo model of bladder stretch injury. J Urol. 2001;165(6 Pt 2):2235-2240.
    20. Bagli DJ, Joyner BD, Mahoney SR, McCulloch L. The hyaluronic acid receptor RHAMM is induced by stretch injury of rat bladder in vivo and influences smooth muscle cell contraction in vitro [corrected]. J Urol. 1999;162(3 Pt 1):832-840.
    21. Peters CA, Freeman MR, Fernandez CA, Shepard J, Wiederschain DG, Moses MA. Dysregulated proteolytic balance as the basis of excess extracellular matrix in fibrotic disease. Am J Physiol. 1997;272(6 Pt 2):R1960-1965.
    22. Backhaus BO, Kaefer M, Haberstroh KM, et al. Alterations in the molecular determinants of bladder compliance at hydrostatic pressures less than 40 cm. H2O. J Urol. 2002;168(6):2600-2604.
    23. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128(1):45-53.
    24. Balbin M, Fueyo A, Tester AM, et al. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature genetics. 2003;35(3):252-257.
    25. Gutierrez-Fernandez A, Inada M, Balbin M, et al. Increased inflammation delays wound healing in mice deficient in collagenase-2 (MMP-8). Faseb j. 2007;21(10):2580-2591.
    26. Garcia-Prieto E, Gonzalez-Lopez A, Cabrera S, et al. Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS One. 2010;5(10):e13242.
    27. Ozcan A, Korkmaz A, Oter S, Coskun O. Contribution of flavonoid antioxidants to the preventive effect of mesna in cyclophosphamide-induced cystitis in rats. Arch Toxicol. 2005;79(8):461-465.
    28. Chuang YC, Yoshimura N, Huang CC, Wu M, Tyagi P, Chancellor MB. Expression of E-series prostaglandin (EP) receptors and urodynamic effects of an EP4 receptor antagonist on cyclophosphamide-induced overactive bladder in rats. BJU Int. 2010;106(11):1782-1787.
    29. Kim SE, Shin MS, Kim CJ, et al. Effects of Tamsulosin on Urinary Bladder Function and Neuronal Activity in the Voiding Centers of Rats with Cyclophosphamide-induced Overactive Bladder. Int Neurourol J. 2012;16(1):13-22.
    30. Wu KC, Chiang BJ, Tsai WH, Chung SD, Chien CT. I-Tiao-Gung extract through its active component daidzin improves cyclophosphamide-induced bladder dysfunction in rat model. Neurourol Urodyn. 2018;37(8):2560-2570.
    31. Lin WC, Ko YJ, Wu YW. Effects of 28-day repeated oral Glycine Tomentella Hayata on rats. J Chin Med. 2000;11(4):205-215.
    32. Chien CT, Yu HJ, Lin TB, Lai MK, Hsu SM. Substance P via NK1 receptor facilitates hyperactive bladder afferent signaling via action of ROS. Am J Physiol Renal Physiol. 2003;284(4):F840-851.
    33. Tsai WH, Wu CH, Yu HJ, Chien CT. l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats. Neurourol Urodyn. 2017;36(2):297-307.
    34. Lee WC, Wu CC, Chuang YC, Tain YL, Chiang PH. Ba-Wei-Die-Huang-Wan (Hachimi-jio-gan) can ameliorate cyclophosphamide-induced ongoing bladder overactivity and acidic adenosine triphosphate solution-induced hyperactivity on rats prestimulated bladder. J Ethnopharmacol. 2016;184:1-9.
    35. Kitta T, Tanaka H, Mitsui T, Moriya K, Nonomura K. Type 4 phosphodiesterase inhibitor suppresses experimental bladder inflammation. BJU Int. 2008;102(10):1472-1476.
    36. Xu X, Malave A. Protective effect of berberine on cyclophosphamide-induced haemorrhagic cystitis in rats. Pharmacology & toxicology. 2001;88(5):232-237.
    37. Fry CH, Ikeda Y, Harvey R, Wu C, Sui GP. Control of bladder function by peripheral nerves: avenues for novel drug targets. Urology. 2004;63(3 Suppl 1):24-31.
    38. Birder LA, Kanai AJ, Cruz F, Moore K, Fry CH. Is the urothelium intelligent? Neurourol Urodyn. 2010;29(4):598-602.
    39. Brady CM, Apostolidis A, Yiangou Y, et al. P2X3-immunoreactive nerve fibres in neurogenic detrusor overactivity and the effect of intravesical resiniferatoxin. Eur Urol. 2004;46(2):247-253.
    40. Ruggieri MR, Sr. Mechanisms of disease: role of purinergic signaling in the pathophysiology of bladder dysfunction. Nat Clin Pract Urol. 2006;3(4):206-215.
    41. Yoshimura N, Kaiho Y, Miyazato M, et al. Therapeutic receptor targets for lower urinary tract dysfunction. Naunyn Schmiedebergs Arch Pharmacol. 2008;377(4-6):437-448.
    42. Kaan TK, Yip PK, Grist J, et al. Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord. J Neurosci. 2010;30(12):4503-4507.
    43. O'Reilly BA, Kosaka AH, Knight GF, et al. P2X receptors and their role in female idiopathic detrusor instability. J Urol. 2002;167(1):157-164.
    44. Jayarajan J, Radomski SB. Pharmacotherapy of overactive bladder in adults: a review of efficacy, tolerability, and quality of life. Res Rep Urol. 2013;6:1-16.
    45. Khullar V, Amarenco G, Angulo JC, et al. Efficacy and tolerability of mirabegron, a beta(3)-adrenoceptor agonist, in patients with overactive bladder: results from a randomised European-Australian phase 3 trial. Eur Urol. 2013;63(2):283-295.
    46. Tsai WH, Wu CH, Cheng CH, Chien CT. Ba-Wei-Di-Huang-Wan through its active ingredient loganin counteracts substance P-enhanced NF-kappaB/ICAM-1 signaling in rats with bladder hyperactivity. Neurourol Urodyn. 2016;35(7):771-779.
    47. Gonzalez EJ, Peterson A, Malley S, et al. The effects of tempol on cyclophosphamide-induced oxidative stress in rat micturition reflexes. ScientificWorldJournal. 2015;2015:545048.
    48. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of hematology & oncology. 2013;6:19.
    49. Chen YT, Chiang HJ, Chen CH, et al. Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat. Journal of pineal research. 2014;57(3):248-261.
    50. Nelson KK, Melendez JA. Mitochondrial redox control of matrix metalloproteinases. Free radical biology & medicine. 2004;37(6):768-784.
    51. Siwik DA, Colucci WS. Regulation of matrix metalloproteinases by cytokines and reactive oxygen/nitrogen species in the myocardium. Heart failure reviews. 2004;9(1):43-51.
    52. Choi IS, Yu K, Kim J, et al. Alterations in deoxyribonucleic acid (DNA) methylation patterns of Calca, Timp3, Mmp2, and Igf2r are associated with chronic cystitis in a cyclophosphamide-induced mouse model. Urology. 2013;82(1):253 e259-215.
    53. Zhang CY, Li XH, Zhang T, Fu J, Cui XD. Hydrogen sulfide suppresses the expression of MMP-8, MMP-13, and TIMP-1 in left ventricles of rats with cardiac volume overload. Acta Pharmacol Sin. 2013;34(10):1301-1309.
    54. Giannandrea M, Parks WC. Diverse functions of matrix metalloproteinases during fibrosis. Disease models & mechanisms. 2014;7(2):193-203.
    55. Goncalves FM, Jacob-Ferreira AL, Gomes VA, et al. Increased circulating levels of matrix metalloproteinase (MMP)-8, MMP-9, and pro-inflammatory markers in patients with metabolic syndrome. Clin Chim Acta. 2009;403(1-2):173-177.
    56. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Seminars in liver disease. 2001;21(3):351-372.
    57. Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol. 2007;46(5):955-975.
    58. Metcalfe PD, Wang J, Jiao H, et al. Bladder outlet obstruction: progression from inflammation to fibrosis. BJU Int. 2010;106(11):1686-1694.
    59. Howard PS, Kucich U, Coplen DE, He Y. Transforming growth factor-beta1-induced hypertrophy and matrix expression in human bladder smooth muscle cells. Urology. 2005;66(6):1349-1353.
    60. Gabella G. Hypertrophy of visceral smooth muscle. Anat Embryol (Berl). 1990;182(5):409-424.
    61. Chen TY, Shiao MS, Pan BS. Inhibition of 12- and 15-lipoxygenase activities and protection of human and tilapia low density lipoprotein oxidation by I-Tiao-Gung (Glycine tomentella). Lipids. 2005;40(11):1171-1177.

    下載圖示
    QR CODE