簡易檢索 / 詳目顯示

研究生: 鄭振宗
JENG, JEN-TZONG
論文名稱: 直流高溫超導SQUID的特性及其在非破壞性檢測上之應用
High-Tc dc SQUID and its Application to Nondestructive Evaluation
指導教授: 洪姮娥
Horng, Herng-Er
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 90
中文關鍵詞: 超導非破壞非破壞性檢測非破壞性試驗約瑟芬接面渦電流缺陷裂隙
英文關鍵詞: SQUID, NDE, nondestructive, Josephson junction, step edge, eddy current, defect, flaw
論文種類: 學術論文
相關次數: 點閱:274下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討直流高溫超導SQUID的性質,並對高溫超導SQUID在渦電流非破壞性檢測上之應用的物理問題加以分析研究。首先研究構成高溫超導SQUID的約瑟芬接面之性質,將階梯式接面中晶粒界對SQUID之電壓-磁通特性的影響加以測量並分析。此外,並研究SQUID的圖案設計,尋求增加SQUID磁量計及梯度計之有效面積的方法。在以SQUID做非破壞性檢測的研究上,則是以理論分析及實驗測量來比較並驗證SQUID所測得之缺陷磁場。研究結果發現,缺陷磁場的相位移與缺陷的深度呈線性的關係。因此,藉由測量缺陷磁場的相位移,將可對缺陷的深度作定量的分析及鑑定。

    In this work, the characteristics of the high-Tc dc SQUID and the application of the SQUID to nondestructive evaluation were investigated. In probing the characteristics of the Josephson junctions for the SQUID, the first grain boundary was found to dominate the voltage-flux characteristics of the high-Tc dc SQUID with step edge junctions. In addition to the investigation in the junction-related characteristics, the pattern design of the SQUID was studied in order to explore the factors for enhancing the effective area of the directly coupled SQUID magnetometer and gradiometer. In the research for the application of the high-Tc SQUID to nondestructive evaluation, the defect field measured with the SQUID-based nondestructive evaluation system was investigated theoretically and experimentally. The eddy-current distribution of the sample and the defect field of the flaw were calculated with the finite element method. The phase of the defect field was found to exhibit the linear dependence on the depth of the flaw according to the theoretical and the experimental results. Hence, it is possible to find the depth of the flaw quantitatively by analyzing the phase of the defect field over the sample.

    CHAPTER 1. Introduction .......................1 CHAPTER 2. Experimental Details ...............4 2.1 Fabrication of the Josephson junction and the dc SQUID .........................................4 2.2 Measurement systems for Josephson junctions and dc SQUIDs ....................................... 5 2.3 Details of the SQUID-based nondestructive evaluation system ........................................12 2.4 Calibration of the nondestructive evaluation system ........................................19 CHAPTER 3. Characteristics of YBCO Josephson Junctions and dc SQUIDs on SrTiO3 Step-edge Substrates ....................................23 3.1 Theories of high-Tc Josephson junctions and dc SQUIDs ........................................23 3.2 YBCO Josephson junctions on SrTiO3 step-edge substrates ....................................28 3.3 YBCO dc SQUIDs fabricated on SrTiO3 step-edge substrates ....................................33 3.4 Summary ...................................44 CHAPTER 4. Application of High-Tc SQUID to Nondestructive Evaluation ....................................45 4.1 Theories for the SQUID-based nondestructive evaluation ....................................45 4.2 Finite element analysis for eddy-current distribution ..................................50 4.3 Eddy-current nondestructive evaluation using a high-Tc SQUID .........................................60 4.4 Summary ...................................78 CHAPTER 5. Conclusion .........................80 REFERENCES ....................................82 APPENDIX ......................................86 ACKNOWLEDGEMENTS ............................. 90

    [1] John P. Wikswo Jr., “SQUID magnetometers for Biomagnetism and Nondestructive Testing: Important Questions and Initial Answers”, IEEE Trans. Appl. Suercond. 5, 74 (1995)
    [2] G. B. Donaldson, “SQUIDs for everything else”, Superconducting Electronics, edited by H. Weinstock, and M. Nisenoff, New York: Spring Verlag, p.175 (1989)
    [3] D. Koelle, A. Miklich, F. Ludwig, E. Dantskar, D. T. Nemeth, and J. Clarke, Appl. Phys. Lett. 63, 2271 (1993)
    [4] R. Cantor, L. P. Lee, M. Teepe, V. Vinetskiy, and J. Longo, IEEE Trans. Appl. Supercond. 5, 2927 (1995)
    [5] F. Ludwig, E. Dantskar, R. Kleiner, A. H. Miklich, and J. Clarke, Appl. Phys. Lett. 66, 1418 (1995)
    [6] W. G. Jenks, S. S. H. Sadeghi, and John P. Wikswo, Jr., “Review Article: SQUIDs for nondestructive evaluation”, J. Physics D: Appl. Phys. 30, 293 (1997)
    [7] D. Drung, T. Radic, H. Matz, H. Koch, S. Knappe, S. Menkel, and H. Burkhardt, IEEE Trans. Appl. Supercond. 7, 3283 (1997).
    [8] R. Gross, P. Chaudhari, M. Kawasaki, M. B. Ketchen and A. Gupta, Appl. Phys. Lett. 58, 543 (1991)
    [9] K. Char, M. S. Colclough, S. M. Garrison, N. Newman and G. Zaharchuk, Appl. Phys. Lett. 59, 733 (1991)
    [10] C. L. Jia, B. Kabius, L. Urban, K. Herrmann, J. Schubert, W. Zander, and A. I. Braginski, Physica C 196, 211 (1992)
    [11] M. Matsuda, Y. Murayama, S. Kiryu, N. Kasai, S. Kashiwaya, M. Koyanagi, and T. Endo, IEEE Trans. Magn. 27, 3043 (1991)
    [12] Yu Pei Ma, John P. Wikswo, Jr, “Techniques for depth-selective, low-frequency eddy current analysis for SQUID based nondestructive testing”, J. Nondestr. Eval. 14, 149 (1995).
    [13] M. Mück, M. v. Kreutzbruck, U. Baby, J. Tröll and C. Heiden, “Eddy Current Nondestructive Material Evaluation based on HTS SQUIDs”, Physica C 282, 407, 1997.
    [14] A. Haller, Y. Tavrin, H.-J. Krause, “Eddy-current Nondestructive material evaluation by high-temperature SQUID gradiometer using rotating magnetic fields”, IEEE Trans. Appl. Supercond. 7, 2874, 1997.
    [15] L. M. Wang, H. W. Yu, H. C. Yang, and H. E. Horng, Physica C 256, 57, (1996).
    [16] J. T. Jeng, S. Y. Yang, H. E. Horng, and H. C. Yang, “Detection of Deep Flaws by Using a HTS-SQUID in Unshielded Environment”, IEEE Trans. Appl. Supercond. 11, 1295 (2001)
    [17] J. D. Jackson, “Classical Electrodynamics”, 2nd edition, John Wiley & Sons, New York (1975)
    [18] N. Tralshawala, J. R. Claycomb, and J. H. Miller, Jr., “Practical SQUID instrument for nondestructive testing”, Appl. Phys. Lett. 71, 1573, 1997
    [19] Y. Yavrin, H.-J. Krause, W. Wolf, V. Glyantsev, J. Schubert, W. Zander and H. Bousack, “Eddy current technique with high temperature SQUID for nondestructive evaluation of nonmagnetic metallic structures”, Cryogenics 36, 83, 1996
    [20] T. Van Duzer, C.W. Turner, “Principles of Superconductive Devices and Circuits”, Elsevier, New York (1981).
    [21] Michael Tinkham, “Introduction to superconductivity”, McGraw-Hill (1996).
    [22] A. H. Miklich, John Clarke, M. S. Colcough and K. Char, “Flicker (1/f) noise in b-epitaxial grain boundary junctions of YBaCu3O7-x”, Appl. Phys. Lett. 60, 1899 (1992).
    [23] Tesche and J. Clarke, Low Temp. Phys., 29, 301 (1977)
    [24] D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker and John Clarke, “High- transition-temperature superconducting quantum interference devices”, Reviews of Modern Physics 71, 631 (1999).
    [25] K. Enpuku, Y. Shimomura, and T. Kisu, J. Appl. Phys. 73, 7929 (1993)
    [26] D. Drung, R. Cantor, M. Peters, H.-J. Scheer, and H. Koch, Appl. Phys. Lett. 57, 406 (1990).
    [27] M. B. Ketchen, IEEE Trans. Magn. 17, 387 (1991).
    [28] D. Koelle, A. Miklich, E. Dantskar, F. Ludwig, D. T. Nemeth, J. Clarke, W. Ruby and K. char, Appl. Phys. Lett. 63, 3630 (1993)
    [29] E. Dantsker, S. Tanaka, and John Clarke, Appl. Phys. Lett. 70, 2037, (1997)
    [30] L. P. Lee, M. Teepe, V. Vinetskiy, R. Cantor, and M. S. Colclough, Appl. Phys. Lett. 66, 3058 (1995)
    [31] G. M Daalmans, L. Bär, M. Kühnl, D. Uhl, M. Selent and J. Ramos, “Single Layer YBaCuO - Gradiometer”, IEEE Trans. Appl. Supercond. 5, 3109 (1995)
    [32] C. Carr, A. Eulenburg, E. J. Romans, C. M. Pegrum and G. B. Donaldson, “High-temperature superconducting YBCO dc SQUID gradiometers fabricated on STO bicrystal substrates”, Supercond. Sci. Technol. 11, 1317 (1998)
    [33] S. Knappe, D. Drung, T. Schurig, H. Koch, M. Klinger and J. Hinken, “A planar YBa2Cu3O7 gradiometer at 77 K”, Cryogenics 32, 881 (1992)
    [34] J.T. Jeng, Y.C. Liu, S.Y. Yang, H.E. Horng, J.R. Chiou, J.H. Chen, and H.C. Yang, "Fabrication of YBCO step-edge Josephson junctions", Institute of Physics Conference Ser. 167, 265 (2000)
    [35] K. Herrmann, G. Kunkel, M. Siegel, J. Schubert, W. Zander, A. I. Braginski, C. L. Jia, B. Kabius, and L. Urban, J. Appl. Phys. 78, 1131 (1995).
    [36] S. Y. Yang, C. H. Chen, H. E. Horng, W. L. Lee and H. C. Yang, IEEE Trans. Appl. Supercond. 9, 3121 (1999)
    [37] L. D. Jackel, W. H. Henkels, J. M. Warlaumont, and R. A. Buhrman, Appl. Phys. Lett. 29, 214 (1976).
    [38] R. H. Koch, C. P. Umbach, G. J. Clark, P. Chaudhari, and R. B. Laibowitz, Appl. Phys. Lett. 51, 200 (1987)
    [39] Frederick W. Grover, Inductance calculation: working formulas and tables, New York: Nostrand (1947)
    [40] J.T. Jeng, Y.C. Liu, S.Y. Yang, H.E. Horng, H.C. Yang, and H.H. Sung, "Voltage modulation of the high Tc SQUIDs with step-edge junctions", Physica C 341-348, 2701 (2000).
    [41] V. Foglietti, R. H. Koch, J. Z. Sun, R. B. Laibowitz, and W. J. Gallagher, J. Appl. Phys. 77, 378 (1995).
    [42] Yu Pei Ma, and John P. Wikswo, Jr., “Imaging subsurface defects using SQUID magnetometers”, Review of Progress in QNDE 12, 1137 (1993)
    [43] Nathan Ida, “Numerical Modeling for Electromagnetic Non-Destructive Evaluation“, Chapman & Hall (1995.)
    [44] James R. Claycomb, Nilesh Tralshawala, Hsiao-Mei Cho, Mike Boyd, Zhongji Zou, Xin Wen Xu, and John H. Miller, Jr., Review of Scientific Instruments 69, 499 (1998)
    [45] C. V. Dodd and W. E. Deeds, “Analytical solution to eddy-current probe coil problems”, J. Appl. Phys. 39, 2829 (1968).
    [46] J. T. Jeng, H. E. Horng, Chao-Hsiang Chen, J. H. Chen, and H. C. Yang, "Nondestructive Evaluation of Flaws Using SQUIDs", Physica C 341-348, 2637 (2000).
    [47] M. v. Kreutzbruck, J. Troll, M. Muck, C. Heiden, and Y. Zhang, IEEE Trans. Appl. Supercond. 7, 3279 (1997).
    [48] Walter N. Podney, “Performance measurements fo a superconductive microprobe for eddy current evaluation of subsurface flaws”, IEEE Trans. Appl. Supercond. 3, 1914, (1993).

    下載圖示
    QR CODE