研究生: |
王振銓 Russell Ong |
---|---|
論文名稱: |
Anderson Localization in a Bose-Einstein Condensate with Finite Range of Interaction Anderson Localization in a Bose-Einstein Condensate with Finite Range of Interaction |
指導教授: |
吳文欽
Wu, Wen-Chin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 73 |
中文關鍵詞: | Ryberg-dressed BEC 、Blockade radius 、Disorder potential 、Localization 、Healing length |
英文關鍵詞: | Ryberg-dressed BEC, Blockade radius, Disorder potential, Localization, Healing length |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DP.002.2019.B04 |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The emergence of Anderson localization (AL) has been well studied both theoretically and experimentally in zero-range (or contact) interacting Bose-Einstein condensates (BEC). In this thesis, we theoretically study the expansion of an initially confined 1D Rydberg-dressed BEC in a weak random potential in which the range of the interaction, the blockade radius Rc, is tunable. The localization is studied where the zero-range limit (Rc →0) healing length ξ0 is set to be fixed and exceed the disorder correlation length σD. It is found that when Rc ≤ lc, in the short-range superfluid phase (SF) [lc ≃ 1.7 ξ0 is the critical range for the SF–supersolid (SS)transition], exponential localization occurs. In the opposite long-range SS phase, Rc> lc, it yields Gaussian localization. We have verified the results by numerically simulating the oscillating Rydberg-dressed BEC in a weak random potential.
[1] Cornell, E. A. & Wieman, C. E. (2002) Nobel Lecture: Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments. Review of Modern Physics, 74, 875-893.
[2] Bose, S. N. (1924) Plancks gesetz und Lichtquantenhypothese. Zeitsshrift fur Physik, 26, 178-181.
[3] Einstein, A. (1925) Quantentheorie de Einatomigen Idealen Gases. Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1, 3-14.
[4] Thorndike, A. S. & Evans, J. (2007) Quantum Mechanics at the Crossroads: New Perspectives from history, Philosophy, and Physics. Springer, Berlin.
[5] Kapitza, P. (1938) Viscosity of Liquid Helium Below the λ-point. Nature, 141, 74.
[6] Allen, J. F. & Misener, A.D. (1938) Flow of Liquid Helium II. Nature, 171, 75.
[7] London, F. (1938) The λ-phenomenon of Liquid Helium and the Bose-Einstein Degeneracy. Nature, 141, 643-644.
[8] Landau, L. (1941) Theory of the Superfluidity of Helium II. Physical Review, 60, 356-358.
[9] Bogoliubov, N. (1946) On the Theory of Superfluidity. Journal of Physics, 11, 23-32.
[10] Penrose, L. & Onsager, L. (1956) Bose-Einstein Condensation and Liquid Helium. Physical Review, 104, 576-584.
[11] Henshaw, D. G. & Woods, A.D. B. (1960) Modes of Atomic Motions in Liquid Helium by Inelastic Scattering of Neutrons. Physical Review, 121, 1266-1274.
[12] Palevsky, H., Otnes, K., & Larsson, K.E. (1958) Excitation of Rotons in Helium II by Cold Neutrons. Physical Review, 112, 11-18.
[13] Hohenberg, P.C. & Martin, P. C. (1965) Microscopic Theory of Superfluid Helium. Annals of Physics, 281, 636-705.
[14] Hecht, C.E. (1959) The Possible Superfluid Behaviour of Hydrogen Atom Gases and Liquids. Physica, 25, 1159-1161.
[15] Pitaevskii, L. & Stringari S. (2003) Bose-Einstein Condensation. Oxford University Press, Oxford.
[16] Fallani, L. & Inguscio, M. (2013) Atomic Physics: Precise Measurements and Ultracold Matter. Oxford University Press, Oxford.
[17] Stwalley, W. C. & Nosanow, L. H. (1976) Possible “New” Quantum Systems. Physical Review Letters, 36, 910-913.
[18] Kleppner, D., Fried, D. G., Killian, T. C., Willmann, L., Landhuis, D., Moss, S. C., & Greytak, T. J. (1998) Bose-Einstein Condensation of Atomic Hydrogen. Physical Review Letters, 81, 3811-3814.
[19] Landini, M., Roy, S., Roati, G., Simoni, A., Inguscio, M., Modugno, G., & Fattori, M. (2012) Direct Evaporative Cooling of 39K Atoms to Bose-Einstein Condensation. Physical Review A, 86, 033421.
[20] Sugawa, S., Yamazaki, R., Taie, S., & Takashi, Y. (2011) Bose-Einstein Condensate in Gases of Rare Atomic Species. Physical Review A, 84, 011610(R)
[21] Klaers, J., Schmitt, J., Vewinger, F., & Weitz, M. (2010) Bose-Einstein Condensation of Photons in an Optical Microcavity. Nature, 468, 545-548.
[22] Anderson, M. H., Ensher, J. R., Matthews, M.R., Wieman, C. E., & Cornell, E. A. (1995) Observation of Bose-Einstein Condensation in a Dilute Vapor. Science, 269, 198-201.
[23] Davis, K. B., Mewes, M. O., Andrews, M. R., van Druten, D. J., Durfee, D. S., Kurn, D. M., & Ketterle, W. (1995) Bose-Einstein Condensation in a Gas of Sodium Atoms. Physical Review Letters, 75, 3969-3973.
[24] Pethick, C.J. & Smith, H. (2002) Bose-Einstein Condensation in Dilute Gases. Cambridge University Press, United Kingdom.
[25] https://www.nobelprize.org/nobel_prizes/physics/laureates/2001/
[26] Kapusta, J. I. (1981) Bose-Einstein Condensation, Spontaneous Symmetry Breaking, and Gauge Theories. Physical Review D, 24, 426-439.
[27] Bloch, I., Dalibard, J., & Zwerger, W. (2008) Many-body Physics with Ultracold Gases. Reviews of Modern Physics, 80, 885-964.
[28] Thomas, N. R., Kjærgaard, N., Julienne, P. S., & Wilson, A. C. (2004) Imaging off s and d Partial-Wave Interference in Quantum Scattering of Identical Bosonic Atoms. Physical Review Letters, 93, 173201.
[29] Lipparni, E. (2003) Modern Many-Particle Physics: Atomic Gases, Quantum Dots and Quantum Fluids. World Scientific Publishing Co. Pte. Ltd., Singapore.
[30] Abdullah, M (2009) Fisika Statistik untuk Mahasiswa MIPA. ITB Press, Bandung.
[31] Anderson, P. W. (1958) Absence of Diffusion in Certain Random Lattices. Physical Review, 109, 1492-1505.
[32] Lye, J. E., Fallani, L., Modugno, M., Wiersma, D., Fort, C., & Inguscio, M. (2004) A Bose-Einstein Condensate in a Random Potential. Physical Review Letters, 95, 070401.
[33] Griffin, A., Snoke, D.W., & Stringari, S. (1995) Bose-Einstein Condensation. Cambridge University Press, Cambridge.
[34] von Hase, M. (2010) Bose-Einstein Condensation in Weak and Strong Disorder Potentials. Bachelor Thesis, Freie Universitat Berlin.
[35] Sanchez-Palencia, L., Clement,D., Lugan, P., Bouyer, P., Shlyapnikov, G. V., & Aspect, A. (2007) Anderson Localization of Expanding Bose-Einstein Condensates in Random Potentials. Physical Review Letters, 98, 210401.
[36] Schulte, T., Drenkelforth, S., Kruse, J., Ertmer, W., Arlt, J., Sacha, K., Zakrzewski, & J., Lewenstein, M. (2005) Routes Towards Anderson-Like Localization of Bose-Einstein Condensates in Disordered Optical Lattices. Physical Review Letters, 95, 170411.
[37] Billy, J., Josse, V., Zuo, Z., Bernard, A., Hambrecht, B., Lugan, P., Clement, D., Sanchez-Palencia, L., Bouyer, P., & Aspect, A. (2008) Direct Observation of Anderson Localization of Matter Waves in a Controlled Disorder. Nature, 453, 891-894.
[38] Hulet, R. G., Dries, D., Pollack, S. E., & Hitchcock, J. M. (2010) Dissipative Transport of A Bose-Einstein Condensate. Physical Review A, 82, 033603.
[39] Zaremba, E. & Wu, Z. (2011) Dissipative Dynamics of a Harmonically Confined Bose-Einstein Condensate. Physical Review Letters, 106, 165301.
[40] 曾,靖夫. (2011) Dissipation of a Harmonically Trapped Bose-Einstein Condensate due to Impurity Scattering. M.Sc Thesis, National Taiwan Normal University.
[41] Henkel, N., Cinti, F. Jain, p. Pupillo, G. & Pohl, T. (2012) Supersolid Vortex Crystals in Rydberg-Dressed Bose-Einstein Condensates. Physical Review Letters, 108, 265301.
[42] Schutte, M. (2007) Bose-Eisntein Condensates with Long-Range Interactions. Diploma Thesis, Free University of Berlin.
[43] Lewnstein, M., Sanpera, A., & Ahufinger, V. (2012) Ultracold Atoms in Optical Lattices: simulating quantum many-body systems. Oxford University Press, United Kingdom.
[44] Plodzien, M., Lochead, G., de Hond, J., van Druten N. J., & Kokkelmans S. (2017) Rydberg Dressing of a One dimensional Bose-Einstein Condensates. Physical Review A, 95, 043606.
[45] Hsueh, C. H., Lin, C. T., Horng, T. L. Wu, W. C. (2014) Quantum Crystals in a Trapped Rydberg-Dressed Bose-Einstein Condensate. Physical Review A, 86,013619.
[46] Markovic, N., Christiansen, C., Mack, A. M., Huber W. H., Goldman, A. M. (1999) Superconductor-insulator Transition in Two Dimensions. Physical Review B, 60, 4320-4328.
[47] Reppy, J. D. (1992) Superfluid Helium in Porous Media. Journal of Low Temperature Physics, 87, 205-245.
[48] Aspect, A. & Inguscio, M. (2009 Anderson Localization of Ultracold atoms. Physics Today, 62, 30-35.
[49] Chen, Y.P., Hitchcock, J., Dries, D., Junker, M., Welford, C., & Hulet, R. G. (2008) Phase Coherence and Superfluid-Insulator Transition in a Disordered Bose-Einstein Condensate. Physical Review A, 77, 033632.
[50] Wu, Z. (2013) Dissipative Dynamics of Atomic Bose-Einstein Condensates at Zero Temperature. Dissertation, Queen’s University.
[51] Tsuneto, T. (1998) Superconductivity and Superfluidity. Cambridge University Press, New York.
[52] Zaremba, E. (1998) Sound Propagation in a Cylindrical Bose-Einstein Condensed Gas. Physical Review A, 57, 518-521.
[53] Binh, L. N. (2015) Optical Fiber Communication Systems with MATLAB and Simulink Models. CRC Press, Florida.
[54] Fitzmaurice, N., Gurarie, D., McCaughan, F., & Woyczynski, W. A. (1993) Nonlinear Waves and Weak turbulence with applications in oceanography and condensed matter physics. Springer Science+Business Media, New York.
[55] Tuszynski, J. A. (2008) Molecular and Cellular Biophysics. Chapman & Hall/CRC, Florida.
[56] Liu, J. P., Zhang, Z., & Zhao, G. (2017) Skyrmions: Topological Structures, Properties, and Applications. CRC Press, Florida.
[57] Yunyi, G. (2004) Dimension reduction of the Gross-Pitaevskii Equation for Bose-Einstein Condensates. Thesis, National University of Singapore.
[58] De Gennes, P.G. & Prost, J. (1993) The Physics of Liquid Crystal. Clarendon Press, Oxford.
[59] Vakluchykm I., Fistul, M. V., Qin, P., & Flash, S. (2017) Anderson Localization in generalized discrete-time quantum walks. Physical Review B, 96. 144204.
[60] Giergiel, K. & Sacha, K. (2017) Anderson Localization of a Rydberg electron along a classical orbit. Physical Review A, 95, 063402.
[61] Vatnik, I. D., Tikan, A., Onishchukov, G., Churkin, D. V., & Sukhorukov, A. A. (2016) Anderson Localization in Synthetic Photonic Lattices. Scientific Reports, 7, 4301.
[62] Sani, M. & Farzad, M. H. (2018) Anderson Localization of Surface Plasmons in Monolayer Graphene. Physical Review B, 97, 085406.
[63] Ujfalusi, L., Giordano, M., Pittler, F., Kovacs, T. G., & Varga, I. (2015) Anderson Transition and Multifractals in the spectrum of the Dirac Operator of Quantum Chormodynamics at high Temperature. Physical Review D, 92, 094513.
[64] Duan F. & Guojin, J. (2005) Introduction to Condensed Matter Physics. Volume 1. World Scientific Publishing Co. Pte. Ltd., Singapore.
[65] Barenghi, C. F. & Parker N. G. (2016) A Primer on Quantum Fluids. Springer, Switzerland.
[66] Henkel, N. (2013) Rydberd-dressed Bose-Einstein condensates. Dissertation, Dresden University of Technology.
[67] Clement, D. (2007) Proprietes Statiques et Dynamiques D’un Condensat De Boseeinstein Dans Un Potentiel Aleatoire. Université
Pierre et Marie Curie - Paris VI, Français.
[68] Shlyapnikov, G. V., Kagan, Y., & Surkov, E. L. (1996) Evolution of a Bose-Condensed Gas under Variations of the Confining Potential. Physical Review A, 54, R1753-R1756.
[69] Shlyapnikov, G. V. (2014). Ultracold quantum gases, part 1: Bose-condensed gases.
[70] Lugan, P. (2010) Ultracold Bose Gases in Random Potentials: Collective Excitations and Localization Effects. Dissertation, Institut d’Optique Graduate School.
[71] Hsueh, C. H., Tsai, Y. C., Wu, W. C. (2015) Intrinsic-to-extrinsic Supersolid Transition and Fractionally Modulated States in a Lattice Ultracold Bose Gas with Long-range Interaction. Physical Review A, 92, 013634.
[72] Hsueh, C. H., Ong, R., Tseng, J. F., Tsubota, M., & Wu, W. C. (2018) Thermalization and Localization of an Oscillating Bose-Einstein Condensate in a Disordered Trap. Physical Review A, 98, 063613
[73] Pezze, L. & Sanchez- Palencia, L. (2011) Localized and Extended States in a disordered trap. Physical Review Letters, 106, 040601.
[74] Inguscio, M. (2010) Weakly Interacting in a disordered lattice. KITP Conference: Frontiers of Ultracold Atoms and Molecules, University of California, Santa Barbara.
[75] Roati, G., D’Errico, F. Leonardo, Fattori, M., Fort, C., Zaccanti, M., Modugno, G., Modugno, M., & Inguscio, M. (2008) Anderson Localization of a Non-interacting Bose-Einstein Condensate. Nature, 453, 895-898.
[76] Dries, D. F. (2010) Transport properties of a Bose-Einstein Condensate with Tunable Interactions in the Presence of a Disordered or Single Defect Potential. Dissertation, Rice University.
[77] Clement, D. Bouyer, P., Aspect, A., & Sanchez-Palencia, L. (2008) Density Modulations in an Elongated Bose-Einstein Condensate Released from a Disordered Potential. Physical Review A, 77, 033631
[78] Bhongale, S. G., Kakashvili, P., Bolech, C. J., & Pu, H. (2010) Dissipative transport of trapped Bose-Einstein condensates through disorder. Physical Review A, 82, 053632.
[79] Proud, H. (2018) Soliton Structures in Bose-Einstein Condensates. Dissertation, Birmingham University.
[80] Aikawa, K., Frisch, A., Mark, M., Baier, S., Rietzler, A., Grimm, R., & Ferlaino, G. (2012) Bose-Einstein Condensation of Erbium, Physical Review Letters, 108, 210401.
[81] Lu, M., Burdick, N. Q., Youn, S. H., & Lev B. L. (2011) Strongly Dipolar Bose-Einstein of Dysprosium. Physical Review Letters, 107, 190401.
[82] Heinonen, V., Burns, K. J., & Dunkel, J. (2018) Higher-order Quantum Hydrodynamics for Supersolids. arXiv, 1807.04149.