研究生: |
黃佳慧 Huang, Jia-Hui |
---|---|
論文名稱: |
19GHz低雜訊放大器和3.5GHz低雜訊可變增益放大器設計 Design of 19 GHz low noise amplifier and 3.5 GHz variable gain low noise amplifier |
指導教授: |
蔡政翰
Tsai, Jeng-Han |
口試委員: |
林坤佑
Lin, Kun-You 張譽騰 Chang, Yu-Teng 蔡政翰 Tsai, Jeng-Han |
口試日期: | 2023/06/15 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 互補式金屬氧化物半導體 、電流再利用 、中心抽頭變壓器 、固定功率之雜訊與阻抗共匹配 、基極偏壓 、低雜訊放大器 、低雜訊可變增益放大器 、電壓緩衝器 、電流控制架構 、數位控制 |
英文關鍵詞: | Complementary Metal-Qxide-Semiconductor, Current-Reuse, Center-Tap Transformer, Power-Constrained Simultaneous noise and input matching(PCSNIM), Body Bias, Low Noise Amplifier, Variable Gain Low Noise Amplifier, Inverter Buffer, Current Steering, Digital Control |
研究方法: | 實驗設計法 、 紮根理論法 |
DOI URL: | http://doi.org/10.6345/NTNU202301248 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著網路傳輸速度及無線通訊的需求增加,具寬頻、高速傳輸優點之毫米波波段的重要性日趨重視。在此考量到CMOS製程之低成本,高整合性可達到系統單晶片之優勢,本論文所設計之兩顆電路皆採用個別採用標準90-nm、65-nm 金氧半製程進行設計製造。
第一顆電路為應用於衛星通訊頻段17-21GHz之低雜訊放大器,採用TSMC 標準 90-nm CMOS製程所製造設計。此低雜訊放大器第一級放大器使用共源極放大器(Common Source)串接具有中和電容之CS 差動對,此電路使用固定功率之雜訊與阻抗共匹配(PCSNIM)-低雜訊條件下實現低功率損耗、電流再利用技術-兩級放大器共享來自供應電源的直流電流可顯著降低功耗,級間與輸出匹配則採用於矽基製程上設計之中心抽頭變壓器實現以降低電感匹配所浪費的面積。量測結果顯示出,在供應電壓VDD=1.5V下,僅有3mW的功率消耗-2mA的靜態電流,在20.4GHz下具15.57dB的小訊號功率增益,1-dB頻寬為17.5~21.7GHz。線性度量測部分,在19GHz之OP1dB=-9.4dBm。雜訊指數量測部分,在操作1dB頻寬內雜訊指數小於2.4dB,在18GHz可達到最低2dB的雜訊指數,包括DC pad與RF pad之整體晶片面積為665μm×687μm。與已發表之國際期刊相比,此雜訊指數僅2dB、15.57小訊號增益、功耗3mW之90nm CMOS LNA,於17-21GHz操作頻段附近之全積體化互補式金氧半製程中,是世界上第一個達到最低雜訊指數之LNA,且依據FOM性能指標,此低雜訊放大器高達20.1。
第二個電路為操作於基頻頻段3-4GHz之低雜訊可變增益放大器VGLNA,採雙端輸入輸出架構,共串接兩級放大器以提高功率增益,第一、二級放大器分別採取電壓緩衝器(Voltage Buffer)與共源極(Common Source)放大器。使用Current Steering-數位控制搭配基極偏壓(Body Bias)之架構調變主放大器增益。採用標準65-nm 1P9M CMOS製程設計,總晶片面積包括DC Pad與RF Pad為695μm×740μm,在供應電壓VDD=1V,VGS=0.65V,基極偏壓VB=1V下,量測小訊號功率增益部分在主頻段3.5GHz時=23.24dB,可變增益範圍GCR=32.77dB。在頻率3.5GHz,1 dB增益壓縮點的輸出功率OP1dB=3.45dBm。雜訊量測部分,在3GHz之NF=1.9dB。
As the demand of high-speed transmission and wireless communication increases, the importance of the millimeter-wave band that has advantages of broadband and high-speed transmission is being increasingly valued. Considering the advantages of low cost and high integration capabilities of CMOS technology that can achieve system-on-chip(SOC), two circuits in this paper are using standard 90-nm and 65-nm CMOS processes to design and manufacture.
The first circuit is Low noise amplifier applied to 17-21GHz satellite communication and fabricated on TSMC's 90nm CMOS process. The first stage of this LNA utilizes common-source (CS) and series the second stage using neutralized differential common-source stage (CS). This circuit uses Power-Constrained Simultaneous noise and input matching (PCSNIM)-low power consumption realized at low noise figure, current-reuse technology-two stage amplifiers share the DC current from power supply to significantly decrease power consumption, inter-stage and output matching use center-tapped transformers based on silicon-based process to reduce area wasting of inductor matching. Measurement results show that the power consumption is only 3mW-2mA quiescent current, the small signal power gain is 15.57 at 20.4GHz, and the 1-dB bandwidth is 17.5~21.7GHz. The linear measurement, OP1dB is -9.4dBm at 19GHz. Noise Figure measurement, the NF is less thwn 2.4dB within 1-dB bandwidth, and the lowest NF is 2dB at 18GHz. The overall chip area including the DC Pad and RF Pad is 665μm×687μm. Compared with published international journals, this 90nm CMOS LNA with only 2dB NF, small-signal gain 15.57dB, and only 3mW power consumption is the best in a fully integrated CMOS process near the operating frequency band of 17-21GHz. This LNA first achieves the lowest NF in the world (near 19 GHz), and according to the FOM performance index, this LNA is as high as 20.1.
The second circuit is low noise variable gain amplifier (VGLNA) operating in base frequency band 3-4GHz. It adopts a double-ended input and output structure, and series two-stage amplifier to increase the power gain. The first and second amplifiers adopt voltage buffer and CS amplifier respectively. Use Current Steering-digital control and body bias to modify the gain of the main amplifier. The standard 65-nm 1P9M CMOS process design is adopted. The total chip area including DC Pad and RF Pad is 695μm×740μm. Under VDD=1V, VGS=0.65V, and body bias VB=1V of the supply Voltage, the small signal power gain is 23.24dB at the main frequency 3.5GHz, and the GCR is 32.77dB. At 3.5GHz, the output power at the 1-dB gain compression point, OP1dB is 3.45dBm. Noise figure is 1.9dB at 3GHz.
[1] J. Zhang, D. Zhao, X. You, “A 20-GHz 1.9-mW LNA Using gm-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications,”IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714–2723, October 2020.
[2] P. Qin et al., “Compact wideband LNA with gain and input matching bandwidth extensions by transformer,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, pp. 657–659, July. 2017.
[3] J.-F Yeh, C.-Y. Yang, H.-C. Kuo, H.-R. Chuang, “A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier,” in IEEE Radio Frequency Integrated Circuits Symposium, June 2009.
[4] M.-H. Tsai et al., “A 17.5-26 GHz low-noise amplifier with over 8 kV ESD protection in 65 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 9, pp. 483–485, Sep. 2012.
[5] A. Sayag et al., “A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 μm CMOS technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Atlanta, GA, USA, Jun. 2008, pp. 373–376.
[6] W.-C. Wang et al., “A 1 V 23 GHz low-noise amplifier in 45 nm planar bulk-CMOS technology with high-Q above-IC inductors,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 5, pp. 326–328, May 2009.
[7]X. Huang, H. Jia, W. Deng, Z. Wang, B. Chi, “28 GHz Compact LNAs with 1.9 dB NF Using Folded Three-Coil Transformer and Dual-Feedforward Techniques in 65nm CMOS,” RFIC, 2022.
[8] X. Li, S. Shekhar, D. J. Allstot, “Gm-Boosted Common-Gate LNA and Differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
[9] J. Xiao, I. Mehr, J. Silva-Martinez, “A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 292–301, Feb. 2007.
[10] C. -Y. Hsieh, J.-C. Kao, J. -J. Kuo, K. -Y. Lin, “A 57-64 GHz Low-phase-variation variable-gain Amplifier” IEEE MTT-S IMS, Aug. 2012.
[11] K. L. Fong “Dual-Band High-Linearity Variable-Gain Low-Noise Amplifiers for Wireless Applications,” IEEE Int. Solid-State Circuits Conf., Feb. 1999 pp. 224-226
[12] Behzad Razavi, RF Microelectronics, Prentice Hall, 1997.
[13] 郭仁財, 微波工程(三版)Microwave Engineering, 4th Edition, 高立圖書
[14] T.-K. Nguyen, C.-H. Kim, G.-J. Ihm, M.-S. Yang, and S.-G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 5, pp. 1433–1442, May 2004.
[15] S. Shekhar, J. S. Walling, S. Aniruddhan, and D. J. Allstot, “CMOS VCO and LNA using tuned-input tuned-output circuits,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1177–1186, May 2008.
[16] P. Qin et al., “Design of Wideband LNA Employing Cascaded Complimentary Common Gate and Common Source Stages,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 6, pp. 587–589, June. 2017.
[17] H. Liu and C.C. Boon, “A Wideband Analog-Controlled Variable-Gain Amplifier With dB-Linear Characteristic for High-Frequency Applications,” IEEE Trans. Microw. Theory Techn. vol. 64, no. 2, pp. 533-540, Feb.2016.
[18] T.-Y. Chiu, Y. Wang, and H. Wang, “A 3.7–43.7-GHz Low-Power Consumption Variable Gain Distributed Amplifier in 90-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 169-172, Feb.2021.
[19] B. Hur and W. R. Eisenstadt, “CMOS programmable gain distributed amplifier with 0.5-dB gain steps,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 6, pp. 1552–1559, Jun. 2011.
[20] H. Gao, N. Li, M. Li, S. Wang, Z. Zhang, Y.C. Kuan, C. Song, X. Yu, Q. J. Gu, Z. Xu, “A 6.5–12-GHz Balanced Variable-Gain Low-Noise Amplifier With Frequency-Selective Gain Equalization Technique, ”IEEE Trans. Microw. Theory Techn., vol.69, no. 1, Jan. 2021, pp. 732-744.
[21] T. B. Kumar, K. Ma, and K. S. Yeo, “A 7.9-mW 5.6-GHz Digitally Controlled Variable Gain Amplifier with Linearization,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, Nov. 2012, pp.3482-3490.
[22] B. K. Thangarasu, K. X. Ma, K. S. Yeo, S. X. Mou, N. Mahalingam, J. M. Gu, K. M. Lim, Y. Lu, and H. Yu, “A DC to 4 GHz fully differential wideband digitally controlled variable gain amplifier,” in IEEE Asia–Pacific Microw. Conf., Dec. 2010, pp. 2295–2298.
[23] 翁展翔,類比積體電路設計,第二版,東華出版。
[24] 林禎芳,38 GHz可變增益放大器與單邊帶調變混頻器設計,國立臺灣師範大學電機工程學系碩士論文,2019。
[25] 何泰廷,毫米波寬頻鏡像訊號抑制接收機設計,國立臺灣師範大學科技與工程學院電機工程學系碩士論文,2022。
[26] S.-F. Chao, J.-J. Kuo, C.-L. Lin, M.-Da Tsai, H. Wang, “A DC-11.5 GHz Low-Power, Wideband Amplifier Using Splitting-Load Inductive Peaking Technique” IEEE Trans. Microw. Theory Techn., vol. 18, no. 7, July. 2008, pp.482-484.
[27] 張瑞安,X頻帶接收器前端電路與E頻帶低雜訊放大器設計與實現,國立臺灣師範大學應用電子科技學系,2014。
[28] X. Huang, X. Qin, Y. Qin, H. Fang, Z. Hong, “A 0.8-3GHz 40dB Dynamic Range CMOS Variable-Gain Amplifier”, IEEE Inter. Conf. on ASIC,9th 2011.
[29] 張峻瑋,利用基體偏壓與轉導提升技術之 CMOS 射頻 可調增益低雜訊放大,國立中正大學電機工程研究所碩士論文,2009。
[30] D., Noël, and P. Reynaert. CMOS Front Ends for Millimeter-Wave Wireless Communication Systems. KU Leuven, 2015.
[31] Z. Jiang, L. Zhang, Z. Liu, Z.Chen, H. Liu, Y. Wu, C. Zhao, K. Kang “A 33.5-39GHz 5-bit Variable Gain LNA with 4dB NF and Low Phase Shift”, in IEEE Asia–Pacific Microw. Conf.(APMC), Nov. 2017, pp. 1200–1202.
[32] H. C. Yeh, S. Aloui, C.C. Chiong and H. Wang, “A Wide Gain Control Range V-Band CMOS Variable-Gain Amplifier With Built-In Linearizer,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 902-913, Feb. 2013.
[33] J. H. Huang, “A 19-GHz 2-dB NF 3-mW Transformer-Based Low-Noise Amplifier using TSMC’s 90-nm CMOS in Satellite Application”
[34] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer-a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 1, pp. 316–331, Jan. 2002