研究生: |
陳淑貞 CHEN, Shu-Chen |
---|---|
論文名稱: |
以自動化主題分析探索免疫學領域研究主題之發展 The Development of Research Topic in Immunology by the Automatic Topic Analysis |
指導教授: | 曾元顯 |
學位類別: |
碩士 Master |
系所名稱: |
圖書資訊學研究所 Graduate Institute of Library and Information Studies |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 87 |
中文關鍵詞: | 自動化主題分析 、叢集歸類 、免疫學 、研究主題 |
英文關鍵詞: | Automatic cluster analysis, Immunology, Research topic |
論文種類: | 學術論文 |
相關次數: | 點閱:171 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
免疫學是生命科學研究之重要分支,主要探討各器官之免疫反應,於醫學上,與其他領域皆有牽連,因此其研究主題著實與人類密切相關,其熱門之研究主題之探究與掌握刻不容緩。
本研究由ESI資料庫搜集免疫學領域近十年之常被引文章(1998~2008),應用自動化主題分析方式,希冀藉由常被引文章特性了解熱門研究主題與相關社群之群聚關係,並勾勒其主題分佈概念圖。本研究使用主題分析工具Content Analysis Toolkit for Academic Research (CATAR),應用共現字分析、書目對分析與每篇文章之MeSH標題,針對ESI資料庫所收錄之免疫學領域高被引文章與熱門文章共1,223篇進行叢集歸類分析。得三種不同之歸類主題結果後,邀請五位免疫學領域專家進行深度訪談,藉由專家之解讀與比較,得書目對主題歸類結果15個研究主題代表性較佳,可代表近十年熱門研究主題,本研究再依此15個主題深入探討其相關之國家、機構、期刊與作者,進而勾勒免疫領域主題概念圖。
Immunology is the most important part of medical sciences, which is discussing the immune system of human body. The research topic of immunolgy is important for human society, and we should understand the hot topic of immunology.
The main objective of this research is to apply automatic cluster analysis tool to find the hot topic and the topic map of immunology. This research was collected the Highly Cited Papers and Hot Papers of immunology in ten years (1998~2007) from ESI Dababase. Three ways of automatic cluster tools which are co-word analysis, bibliography coupling and MeSH term are applied. In order to choose the best result to represent the hot topic of immunology, this research was also invited five immunology experts to read three results of the cluster analysis. Finally, all experts think the topic from bibliography coupling cluster analysis is the most representive to this research. This research was studied the community of 15 topics which are depended on the bibliography coupling cluster analysis. The tool in this research is called Content Analysis Toolkit for Academic Research (CATAR).
The main results of this research are the 15 topics of immunology and the community of each topic. Finally, all immunology researchers can take benefits of the results for reference.
Felix, M.-I.(1978)。西方醫學史(葉頌壽、葉頌熙譯)(初版):當代醫學雜誌社。
Kendall, M. D.(2001)。免疫兵團(涂可欣譯)(第一版)。台北縣三重市:天下遠見。(原作Dying to Live : how our bodies fight disease年出版)
Porter, R.(2008)。劍橋插圖醫學史(張大慶譯)。台北市:如果
大雁文化。(原作Cambridge Illustrated History of Medicine年出版)
江伯倫(1998)。特輯:免疫學的新進展-緒言。臺灣醫學,2(5),526-526。
行政院國家科學委員會科學技術資料中心編著(2003)。台灣學術研發能量之總體表現:行政院國家科學委員會科學技術資料中心。
林頌堅(2005)。自動化研究主題探勘方法及其在計算語言學之應用。教育資料與圖書館學,42(4),523-544。
美國資訊科學會台北分會編著(1994)。索引典理論與實務。台北市。
馬緒超、李傳健(1997a)。文獻主題分析初探。文獻工作研究,5,3-4。
馬緒超、李傳健(1997b)。文獻主題分析初探。文獻工作研究,5,2。
許文華(2002)。醫學基因工程文獻之書目計量學研究。未出版之碩士論文,國立政治大學圖書資訊研究所。
陳佳君(1995)。從知識結構探討主題分析。書府,16,39。
陳明來(2002)。主題分析在圖書資訊組織之研究探討。圖書與資訊學刊,42,69-84。
陳敏珍(1996)。主題分析理論與方法之探討。在胡述兆教授七秩榮慶祝壽論文集編輯小組編著,圖書館與資訊研究論集:慶祝胡述兆教授七秩榮慶論文集(頁692):漢美。
曾元顯(2002)。文件主題自動分類成效因素探討。中國圖書館學會會報(68),62-83。
曾元顯、林瑜一(2006)。文字探勘技術在教育評鑑研究發展趨勢分析之應用,教育評鑑國際學術研討會。台北。
黃裕惠(2004)。分子生物與遺傳學之文獻計量分析。未出版之碩士論文,國立臺灣大學圖書資訊學研究所。
蔡明月(2003a)。書目對與共被引。在資訊計量學與文獻特性(初版)。台北市:編譯館。
蔡明月(2003b)。資訊計量學與文獻特性。台北市:編譯館。
羅思嘉(2004)。以專利計量學探討遺傳工程研究之生產、影響與關連程度。未出版之博士論文,國立臺灣大學圖書資訊學研究所。
羅思嘉(2005)。從專利分析看台日韓遺傳工程研究之發展。圖書資訊學刊,2(3&4),45-57。
Aksnes, D. W. (2003). Characteristics of highly cited papers. Research Evaluation, 12(3), 159-170.
Aksnes, D. W., & Sivertsen, G. (2004). The effect of highly cited papers on national citation indicators. Scientometrics, 59(2), 213-224.
Arora, J., & Kaur, S. P. (1994). Bibliometric Analysis of Core Journals on Immunology: A Study Based on the Annual Review of Immunology. Annals of Library Science and Documentation, 41(3), 81-94.
Balaban, A. T. (1996). How should citations to articles in high-and low-impact journals be evaluated, or what is a citation worth? Scientometrics, 37(3), 495.
Chan, L. M. (1994). Cataloging and Classifacation: an Introduction. New York: McGraw-Hill.
Chaomei, C. (2005). CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3), 359-377.
Chu, C. M., & O'Brien, A. (1993). Subject analysis: the critical first stage in indexing. Jounal of Information Science, 19, 439.
Dalpe, R. (2002). Bibliometric analysis of biotechnology. Scientometrics, 55(2), 189-213.
Ding, Y., Chowdhury, G. G., & Foo, S. (2001). Bibliometric cartography of information retrieval research by using co-word analysis. Information Processing & Management, 37(6), 817-842.
Goldsby, R., Kindt, T., Osborne, B., & Kuby, J. (2003). Immunology (5th ed.). New York: W.H. Freeman and Company.
Gupta, B. M., Kumar, S., & Karisiddappa, C. R. (1997). Collaboration profile of theoretical population genetics speciality. Scientometrics, 39(3), 293-314.
Kretschmer, H., Hoffmann, U., & Kretschmer, T. (2006). Collaboration structures between German immunology institutions, and gender visibility, as reflected in the Web. Research Evaluation, 15(2), 117-126.
McCain, K. W. (1995). The structure of biotechnology research-and-development. Scientometrics, 32(2), 153-175.
Meadows, A. J. (1998). Communication Research. San Diego: Academic Press.
Morris, T. (2000, Nov 12-16). Visualizing the structure of medical informatics using term co-occurrence analysis. Paper presented at the 63rd Annual Meeting of the American-Society-for-Information-Science, Chicago, Il.
Morris, T. (2001, Nov 03-08). Visualizing the structure of medical informatics using term co-occurrence analysis: II. INSPEC perspective. Paper presented at the 64th Annual Meeting of the American-Society-Information-Science-and-Technology, Washington, D.C.
Onyancha, O. B., & Ocholla, D. N. (2005). An informetric investigation of the relatedness of opportunistic infections to HIV/AIDS. [Article]. Information Processing & Management, 41(6), 1573-1588.
Persson, O. (1994). The intellectual base and research fronts of JASIS 1968-1990. Journal of American Society for Information Science, 45(1), 31-38.
Plomp, R. (1994). The highly cited papers of professors as an indicator of a research groups scientific performance. Scientometrics, 29(3), 377-393.
Ramani, S. V., & De Looze, M. A. (2002). Country-specific characteristics of patent applications in France, Germany and the UK in the biotechnology sectors. Technology Analysis & Strategic Management, 14(4), 457-480.
Rip, A., & Courtial, J. P. (1984). Co-word maps of biotechnology-and example of cognitive scientometrics. Scientometrics, 6(6), 381-400.
Salton, G., & McGill, M., J. (1983). Introduction to Modern Information Retrival. New York: McGraw-Hill.
Sharabchiev, J. T. (1989). Cluster-analysis of bibliographic references as a scientometric method. Scientometrics, 15(1-2), 127-137.
Stegmann, J., & Grohmann, G. (2003). Hypothesis generation guided by co-word clustering. Scientometrics, 56(1), 111-135.
Tabah, A. N. (1996). Information epidemics and the growth of physics., Dissertation of McGill University, Montreal, Canada.
Tijssen, R. J. W., Visser, M. S., & van Leeuwen, T. N. (2002). Benchmarking international scientific excellence: Are highly cited research papers an appropriate frame of reference? Scientometrics, 54(3), 381-397.
Van Raan, A. F. J., & Tijssen, R. J. W. (1993). The neural net of neural network research. Scientometrics, 26(1), 169-192.
Williamson, N. J. (1997). The importance of subject analysis in library and information science education. Technical Service Quarterly, 15(1-2), 73.
Zhu, X., Wu, Q., Zheng, Y. Z., & Ma, X. (2004). Highly cited research papers and the evaluation of a research university: A case study: Peking University 1974-2003. Scientometrics, 60(2), 237-247.