簡易檢索 / 詳目顯示

研究生: 李宜蓁
Lee, Yi-Chen
論文名稱: 中孔洞複合材料應用於電化學與拉曼感測器
Mesoporous Hybrid Nanomaterials for Electrochemical and Raman Sensors
指導教授: 劉沂欣
Liu, Yi-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 中孔洞沸石奈米粒子奈米銀粒子表面拉曼增效應濫用藥物中孔洞碳材電化學感測器多巴胺氧化石墨烯
英文關鍵詞: mesoporous zeolite nanoparticles, Ag nanoparticles, surface enhanced Raman spectroscopy, abuse drug, mesoporous carbon, electrochemical sensor, graphene oxide, dopamine
DOI URL: http://doi.org/10.6345/NTNU202001139
論文種類: 學術論文
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 謝誌 i 摘要 ii Abstract iii 圖目錄 viii 表目錄 xii 第一章 介紹 1 1.1 濫用藥物與多巴胺 1 1.2 電化學感測 4 1.3 拉曼感測 7 1.4 孔洞材料及實驗室進展 11 1.5 研究動機 15 第二章 實驗方法 17 2.1 化學藥品 17 2.2 沸石晶種合成 (Beta Zeolite Seeds, BZS) 19 2.3 中孔洞沸石奈米粒子合成 (MZNs) 19 2.4 中孔洞氧化石墨稀奈米粒子合成 (MGNs) 20 2.5 中孔洞負載銀奈米粒子之合成 (Ag@MZNs) 20 2.6 中孔洞氧化石墨烯奈米粒子碇片電極製作 22 2.7 複合材料之網印電極製作 23 2.7.1 網印碳電極之前處理 23 2.7.2 氧化石墨烯奈米粒子修飾電極 23 2.8紙基晶片製備 24 2.9 拉曼感測晶片製作 25 2.9.1 紙基感測晶片製備 25 2.9.2 感測晶片放大製作 26 2.9.3 感測晶片點樣 27 2.10 實驗與鑑定裝置 27 2.10.1 場效發射式掃描式電子顯微鏡掃描式電子顯微鏡 (Field-Emission Scanning Electron Microscopy, FE-SEM) 27 2.10.2 化學氣相沉積法反應爐 (CVD) 28 2.10.3 粉末樣品打錠模組 29 2.10.4 循環伏安法 (Cyclic Voltammetry) 29 2.10.5 紫外-可見光光譜儀 (UV-Visible Spectrophotometer, UV-Vis) 30 2.10.6 拉曼光譜儀 (Raman) 30 2.10.7界達電位分析儀 (Zeta Potential) 31 2.10.8 氣體吸脫附分析儀 (BET) 32 2.10.9 元素分析儀 (Elemental Analysis) 32 2.10.10 電子穿透顯微鏡 (Transmission Electron Microiscopy, TEM) 33 2.10.11 浸塗機 (Dip coater) 33 第三章 孔洞材增益電化學感測 34 3.1 錠片電極 34 3.1.1 製作方式優化 34 3.1.2 生物分子感測 36 3.2 網印碳電極 39 3.2.1 製備方式優化 39 3.2.2 電極修飾優化 44 3.2.3 感測材料比較 51 A. 表面修飾影響 52 B. 表面官能基影響 56 C. 碳量影響 58 3.3 總結 66 第四章 孔洞材料輔助分離及拉曼檢測 67 4.1 孔洞材紙基晶片製作 67 4.1.1 孔洞材在水中分散性 67 4.1.2 紙基晶片負載孔洞材方法 69 4.1.3 紙基顯影方式之影響 71 4.1.4 濃度對紙基微流道製作影響 75 4.2 染料分離表現 77 4.2.1 流動相選擇之影響 78 4.2.2 固定相選擇之影響 79 4.3 藥物拉曼感測 80 4.3.1 晶片基材選擇 81 A. 基材選擇 81 B. 濾紙孔徑 85 4.3.2 感測材料選擇 88 A. 感測材料比較 88 B. Ag@MZNs負載次數之影響 90 4.3.3 拉曼感測晶片製備方式 92 A. 以外力輔助Ag@MZNs沉積 93 B. 外力輔助感測晶片放大製備 95 4.4 總結 100 第五章 結論與展望 101 參考文獻 103

    1. 食品藥物管理署 108年度藥物濫用防制指引.
    2. Bekolay, T. In Learning in large-scale spiking neural networks, 2011.
    3. Volkow, Nora D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712-725.
    4. Dawson, T. M.; Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003, 302, 819-22.
    5. Bäckman, L.; Waris, O.; Johansson, J.; Andersson, M.; Rinne, J. O.; Alakurtti, K.; Soveri, A.; Laine, M.; Nyberg, L. Increased dopamine release after working-memory updating training: Neurochemical correlates of transfer. Sci. Rep. 2017, 7, 7160.
    6. Baixauli, E. Happiness: Role of Dopamine and Serotonin on Mood and Negative Emotions. Open Access Emerg. Med. 2017, 07.
    7. Caudle, W. M.; Colebrooke, R. E.; Emson, P. C.; Miller, G. W. Altered vesicular dopamine storage in Parkinson's disease: a premature demise. Trends Neurosci. 2008, 31, 303-8.
    8. Abood, E. A.; Wazaify, M. Abuse and Misuse of Prescription and Nonprescription Drugs from Community Pharmacies in Aden City-Yemen. Subst. Use Misuse 2016, 51, 942-7.
    9. Curtin, K.; Fleckenstein, A. E.; Robison, R. J.; Crookston, M. J.; Smith, K. R.; Hanson, G. R. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug Alcohol Depend. 2015, 146, 30-38.
    10. Sajid, M.; Kawde, A.-N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689-705.
    11. Nichkova, M.; Wynveen, P. M.; Marc, D. T.; Huisman, H.; Kellermann, G. H. Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine-related disorders. J. Neurochem. 2013, 125, 724-735.
    12. 王灼杏 濫用藥用快速檢驗試劑產品說明; 台灣尖端先進生技醫藥股份有限公司.
    13. Feng, P.; Chen, Y.; Zhang, L.; Qian, C.-G.; Xiao, X.; Han, X.; Shen, Q.-D. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS Appl. Mater. Interfaces 2018, 10, 4359-4368.
    14. Hubbard, K. E.; Wells, A.; Owens, T. S.; Tagen, M.; Fraga, C. H.; Stewart, C. F. Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed. Chromatogr. 2010, 24, 626-631.
    15. Gowthaman, N. S. K.; Raj, M. A.; John, S. A. Nitrogen-Doped Graphene as a Robust Scaffold for the Homogeneous Deposition of Copper Nanostructures: A Nonenzymatic Disposable Glucose Sensor. ACS Sustain. Chem. Eng. 2017, 5, 1648-1658.
    16. Sun, D.; Zhang, Y.; Wang, F.; Wu, K.; Chen, J.; Zhou, Y. Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sensors Actuators B: Chem. 2009, 141, 641-645.
    17. Jampasa, S.; Siangproh, W.; Duangmal, K.; Chailapakul, O. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 2016, 160, 113-124.
    18. Jian, J.-M.; Fu, L.; Ji, J.; Lin, L.; Guo, X.; Ren, T.-L. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sensors Actuators B: Chem. 2018, 262, 125-136.
    19. Kim, D.-S.; Kang, E.-S.; Baek, S.; Choo, S.-S.; Chung, Y.-H.; Lee, D.; Min, J.; Kim, T.-H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 2018, 8, 14049.
    20. Nagles, E.; Ibarra, L.; Llanos, J. P.; Hurtado, J.; Garcia-Beltrán, O. Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. J. Electroanal. Chem. 2017, 788, 38-43.
    21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
    22. Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366-2369.
    23. Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17-37.
    24. Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105-127.
    25. Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 829-841.
    26. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
    27. Khan, M. Z. H. Graphene Oxide Modified Electrodes for Dopamine Sensing. J. Nanomater. 2017, 2017, 8178314.
    28. Mao, H.; Liang, J.; Zhang, H.; Pei, Q.; Liu, D.; Wu, S.; Zhang, Y.; Song, X.-M. Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens. Bioelectron. 2015, 70, 289-298.
    29. Liu, Y.; She, P.; Gong, J.; Wu, W.; Xu, S.; Li, J.; Zhao, K.; Deng, A. A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B: Chem. 2015, 221, 1542-1553.
    30. Xiao, J.; Lv, W.; Xie, Z.; Tan, Y.; Song, Y.; Zheng, Q. Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J. Mater. Chem. A 2016, 4, 12126-12135.
    31. Walcarius, A. Mesoporous Materials-Based Electrochemical Sensors. Electroanalysis 2015, 27, 1303-1340.
    32. Dong, J.; Hu, Y.; Zhu, S.; Xu, J.; Xu, Y. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Anal. Bioanal. Chem. 2010, 396, 1755-1762.
    33. Wang, J.; Tian, B.; Nascimento, V. B.; Angnes, L. Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta 1998, 43, 3459-3465.
    34. Muhammad, A.; Hajian, R.; Yusof, N. A.; Shams, N.; Abdullah, J.; Woi, P. M.; Garmestani, H. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Adv. 2018, 8, 2714-2722.
    35. Pilas, J.; Selmer, T.; Keusgen, M.; Schöning, M. J. Screen-Printed Carbon Electrodes Modified with Graphene Oxide for the Design of a Reagent-Free NAD+-Dependent Biosensor Array. Anal. Chem. 2019, 91, 15293-15299.
    36. 禪譜科技 4.1 網版印刷電極.
    37. Halvorson, R. A.; Vikesland, P. J. Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environ. Sci. Technol. 2010, 44, 7749-7755.
    38. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.
    39. Seo, M. J.; Kim, G. W.; Tsalu, P. V.; Moon, S. W.; Ha, J. W. Role of chemical interface damping for tuning chemical enhancement in resonance surface-enhanced Raman scattering of plasmonic gold nanorods. Nanoscale Horiz. 2020, 5, 345-349.
    40. Zhang, X.; Sui, H.; Wang, X.; Su, H.; Cheng, W.; Wang, X.; Zhao, B. Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level. PCCP 2016, 18, 30053-30060.
    41. Willets, K. A.; Duyne, R. P. V. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    42. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042-4076.
    43. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669-3712.
    44. Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157-7164.
    45. Yetisen, A. K.; Akram, M. S.; Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 2013, 13, 2210-2251.
    46. Bhanja, P.; Bhaumik, A. Materials with Nanoscale Porosity: Energy and Environmental Applications. Chem Rec 2019, 19, 333-346.
    47. Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. J. Am. Chem. Soc. 2016, 138, 13874-13881.
    48. Wang, B.; Zhang, C.; Zheng, W.; Zhang, Q.; Bao, Z.; Kong, L.; Li, L. Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chem. Mater. 2020, 32, 308-314.
    49. Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Mater. 2016, 1, 16023.
    50. Sreethawong, T.; Yoshikawa, S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal. Commun. 2005, 6, 661-668.
    51. Wang, R.; Yang, J.; Chen, X.; Zhao, Y.; Zhao, W.; Qian, G.; Li, S.; Xiao, Y.; Chen, H.; Ye, Y.; Zhou, G.; Pan, F. Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li–S Battery. Adv. Energy Mater. 2020, 10, 1903550.
    52. Babarao, R.; Dai, S.; Jiang, D.-e. Nitrogen-Doped Mesoporous Carbon for Carbon Capture – A Molecular Simulation Study. J. Phys. Chem. C 2012, 116, 7106-7110.
    53. Kong, W.; Liu, J. Ordered mesoporous carbon with enhanced porosity to support organic amines: efficient nanocomposites for the selective capture of CO2. New J. Chem. 2019, 43, 6040-6047.
    54. Cox, M.; Mokaya, R. Ultra-high surface area mesoporous carbons for colossal pre combustion CO2 capture and storage as materials for hydrogen purification. Sustain. Energy Fuels 2017, 1, 1414-1424.
    55. Liu, L.; Zou, G.; Yang, B.; Luo, X.; Xu, S. Amine-Functionalized Mesoporous Silica @ Reduced Graphene Sandwichlike Structure Composites for CO2 Adsorption. ACS Appl. Nano Mater. 2018, 1, 4695-4702.
    56. Juang, R.-S.; Cheng, Y.-W.; Chen, W.-T.; Wang, K.-S.; Fu, C.-C.; Liu, S.-H.; Jeng, R.-J.; Chen, C.-C.; Yang, M.-C.; Liu, T.-Y. Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Appl. Surf. Sci. 2020, 521, 146372.
    57. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y. Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2016, 120, 24382-24388.
    58. Chen, W.-T.; Cheng, Y.-W.; Yang, M.-C.; Jeng, R.-J.; Liu, T.-Y.; Wang, J.-K.; Wang, Y.-L. Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. J. Phys. Chem. C 2019, 123, 18528-18535.
    59. Suib, S. L. A Review of Recent Developments of Mesoporous Materials. Chem Rec 2017, 17, 1169-1183.
    60. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H. Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chem. Mater. 2018, 30, 8303-8313.
    61. Hao, E.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357-66.
    62. 張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 2019

    63. Prasad, K. S.; Chen, J. C.; Ay, C.; Zen, J. M. Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sensors Actuators B: Chem. 2007, 123, 715-719.
    64. Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M. Disposable electrochemical sensors: A mini review. Electrochem. Commun. 2014, 38, 86-90.
    65. Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M. The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochem. Commun. 2008, 10, 559-563.
    66. Baldwin, R. P.; Thomsen, K. N. Chemically modified electrodes in liquid chromatography detection: A review. Talanta 1991, 38, 1-16.
    67. Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273-278.
    68. Yusoff, N.; Pandikumar, A.; Marlinda, A. R.; Huang, N. M.; Lim, H. N. Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide. Anal. Methods 2015, 7, 3537-3544.
    69. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.
    70. Li, T.-J.; Yeh, M.-H.; Chiang, W.-H.; Li, Y.-S.; Chen, G.-L.; Leu, Y.-A.; Tien, T.-C.; Lo, S.-C.; Lin, L.-Y.; Lin, J.-J.; Ho, K.-C. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors Actuators B: Chem. 2017, 248, 288-297.
    71. Kadara, R. O.; Jenkinson, N.; Banks, C. E. Characterisation of commercially available electrochemical sensing platforms. Sensors Actuators B: Chem. 2009, 138, 556-562.
    72. Cao, Q.; Puthongkham, P.; Venton, B. J. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal. Methods 2019, 11, 247-261.
    73. Vueba, M. L.; Pina, M. E.; Veiga, F.; Sousa, J. J.; de Carvalho, L. A. Conformational study of ketoprofen by combined DFT calculations and Raman spectroscopy. Int. J. Pharm. 2006, 307, 56-65.
    74. Oh, K.; Lee, M.; Lee, S. G.; Jung, D. H.; Lee, H. L. Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 2018, 25, 3339-3350.
    75. Vidya, H.; Kumara Swamy, B. E.; Schell, M. One step facile synthesis of silver nanoparticles for the simultaneous electrochemical determination of dopamine and ascorbic acid. J. Mol. Liq. 2016, 214, 298-305.
    76. Khan, A. F.; Brownson, D. A. C.; Randviir, E. P.; Smith, G. C.; Banks, C. E. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. Anal. Chem. 2016, 88, 9729-9737.

    無法下載圖示 電子全文延後公開
    2025/08/24
    QR CODE