研究生: |
李宜蓁 Lee, Yi-Chen |
---|---|
論文名稱: |
中孔洞複合材料應用於電化學與拉曼感測器 Mesoporous Hybrid Nanomaterials for Electrochemical and Raman Sensors |
指導教授: |
劉沂欣
Liu, Yi-Hsin |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 112 |
中文關鍵詞: | 中孔洞沸石奈米粒子 、奈米銀粒子 、表面拉曼增效應 、濫用藥物 、中孔洞碳材 、電化學感測器 、多巴胺 、氧化石墨烯 |
英文關鍵詞: | mesoporous zeolite nanoparticles, Ag nanoparticles, surface enhanced Raman spectroscopy, abuse drug, mesoporous carbon, electrochemical sensor, graphene oxide, dopamine |
DOI URL: | http://doi.org/10.6345/NTNU202001139 |
論文種類: | 學術論文 |
相關次數: | 點閱:127 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. 食品藥物管理署 108年度藥物濫用防制指引.
2. Bekolay, T. In Learning in large-scale spiking neural networks, 2011.
3. Volkow, Nora D.; Morales, M. The Brain on Drugs: From Reward to Addiction. Cell 2015, 162, 712-725.
4. Dawson, T. M.; Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003, 302, 819-22.
5. Bäckman, L.; Waris, O.; Johansson, J.; Andersson, M.; Rinne, J. O.; Alakurtti, K.; Soveri, A.; Laine, M.; Nyberg, L. Increased dopamine release after working-memory updating training: Neurochemical correlates of transfer. Sci. Rep. 2017, 7, 7160.
6. Baixauli, E. Happiness: Role of Dopamine and Serotonin on Mood and Negative Emotions. Open Access Emerg. Med. 2017, 07.
7. Caudle, W. M.; Colebrooke, R. E.; Emson, P. C.; Miller, G. W. Altered vesicular dopamine storage in Parkinson's disease: a premature demise. Trends Neurosci. 2008, 31, 303-8.
8. Abood, E. A.; Wazaify, M. Abuse and Misuse of Prescription and Nonprescription Drugs from Community Pharmacies in Aden City-Yemen. Subst. Use Misuse 2016, 51, 942-7.
9. Curtin, K.; Fleckenstein, A. E.; Robison, R. J.; Crookston, M. J.; Smith, K. R.; Hanson, G. R. Methamphetamine/amphetamine abuse and risk of Parkinson's disease in Utah: a population-based assessment. Drug Alcohol Depend. 2015, 146, 30-38.
10. Sajid, M.; Kawde, A.-N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689-705.
11. Nichkova, M.; Wynveen, P. M.; Marc, D. T.; Huisman, H.; Kellermann, G. H. Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine-related disorders. J. Neurochem. 2013, 125, 724-735.
12. 王灼杏 濫用藥用快速檢驗試劑產品說明; 台灣尖端先進生技醫藥股份有限公司.
13. Feng, P.; Chen, Y.; Zhang, L.; Qian, C.-G.; Xiao, X.; Han, X.; Shen, Q.-D. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS Appl. Mater. Interfaces 2018, 10, 4359-4368.
14. Hubbard, K. E.; Wells, A.; Owens, T. S.; Tagen, M.; Fraga, C. H.; Stewart, C. F. Determination of dopamine, serotonin, and their metabolites in pediatric cerebrospinal fluid by isocratic high performance liquid chromatography coupled with electrochemical detection. Biomed. Chromatogr. 2010, 24, 626-631.
15. Gowthaman, N. S. K.; Raj, M. A.; John, S. A. Nitrogen-Doped Graphene as a Robust Scaffold for the Homogeneous Deposition of Copper Nanostructures: A Nonenzymatic Disposable Glucose Sensor. ACS Sustain. Chem. Eng. 2017, 5, 1648-1658.
16. Sun, D.; Zhang, Y.; Wang, F.; Wu, K.; Chen, J.; Zhou, Y. Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sensors Actuators B: Chem. 2009, 141, 641-645.
17. Jampasa, S.; Siangproh, W.; Duangmal, K.; Chailapakul, O. Electrochemically reduced graphene oxide-modified screen-printed carbon electrodes for a simple and highly sensitive electrochemical detection of synthetic colorants in beverages. Talanta 2016, 160, 113-124.
18. Jian, J.-M.; Fu, L.; Ji, J.; Lin, L.; Guo, X.; Ren, T.-L. Electrochemically reduced graphene oxide/gold nanoparticles composite modified screen-printed carbon electrode for effective electrocatalytic analysis of nitrite in foods. Sensors Actuators B: Chem. 2018, 262, 125-136.
19. Kim, D.-S.; Kang, E.-S.; Baek, S.; Choo, S.-S.; Chung, Y.-H.; Lee, D.; Min, J.; Kim, T.-H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays. Sci. Rep. 2018, 8, 14049.
20. Nagles, E.; Ibarra, L.; Llanos, J. P.; Hurtado, J.; Garcia-Beltrán, O. Development of a novel electrochemical sensor based on cobalt(II) complex useful in the detection of dopamine in presence of ascorbic acid and uric acid. J. Electroanal. Chem. 2017, 788, 38-43.
21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
22. Kim, Y.-R.; Bong, S.; Kang, Y.-J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010, 25, 2366-2369.
23. Yang, C.; Denno, M. E.; Pyakurel, P.; Venton, B. J. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. Anal. Chim. Acta 2015, 887, 17-37.
24. Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105-127.
25. Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 829-841.
26. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339-1339.
27. Khan, M. Z. H. Graphene Oxide Modified Electrodes for Dopamine Sensing. J. Nanomater. 2017, 2017, 8178314.
28. Mao, H.; Liang, J.; Zhang, H.; Pei, Q.; Liu, D.; Wu, S.; Zhang, Y.; Song, X.-M. Poly(ionic liquids) functionalized polypyrrole/graphene oxide nanosheets for electrochemical sensor to detect dopamine in the presence of ascorbic acid. Biosens. Bioelectron. 2015, 70, 289-298.
29. Liu, Y.; She, P.; Gong, J.; Wu, W.; Xu, S.; Li, J.; Zhao, K.; Deng, A. A novel sensor based on electrodeposited Au–Pt bimetallic nano-clusters decorated on graphene oxide (GO)–electrochemically reduced GO for sensitive detection of dopamine and uric acid. Sensors Actuators B: Chem. 2015, 221, 1542-1553.
30. Xiao, J.; Lv, W.; Xie, Z.; Tan, Y.; Song, Y.; Zheng, Q. Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π–π interactions. J. Mater. Chem. A 2016, 4, 12126-12135.
31. Walcarius, A. Mesoporous Materials-Based Electrochemical Sensors. Electroanalysis 2015, 27, 1303-1340.
32. Dong, J.; Hu, Y.; Zhu, S.; Xu, J.; Xu, Y. A highly selective and sensitive dopamine and uric acid biosensor fabricated with functionalized ordered mesoporous carbon and hydrophobic ionic liquid. Anal. Bioanal. Chem. 2010, 396, 1755-1762.
33. Wang, J.; Tian, B.; Nascimento, V. B.; Angnes, L. Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta 1998, 43, 3459-3465.
34. Muhammad, A.; Hajian, R.; Yusof, N. A.; Shams, N.; Abdullah, J.; Woi, P. M.; Garmestani, H. A screen printed carbon electrode modified with carbon nanotubes and gold nanoparticles as a sensitive electrochemical sensor for determination of thiamphenicol residue in milk. RSC Adv. 2018, 8, 2714-2722.
35. Pilas, J.; Selmer, T.; Keusgen, M.; Schöning, M. J. Screen-Printed Carbon Electrodes Modified with Graphene Oxide for the Design of a Reagent-Free NAD+-Dependent Biosensor Array. Anal. Chem. 2019, 91, 15293-15299.
36. 禪譜科技 4.1 網版印刷電極.
37. Halvorson, R. A.; Vikesland, P. J. Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environ. Sci. Technol. 2010, 44, 7749-7755.
38. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163-166.
39. Seo, M. J.; Kim, G. W.; Tsalu, P. V.; Moon, S. W.; Ha, J. W. Role of chemical interface damping for tuning chemical enhancement in resonance surface-enhanced Raman scattering of plasmonic gold nanorods. Nanoscale Horiz. 2020, 5, 345-349.
40. Zhang, X.; Sui, H.; Wang, X.; Su, H.; Cheng, W.; Wang, X.; Zhao, B. Charge transfer process at the Ag/MPH/TiO2 interface by SERS: alignment of the Fermi level. PCCP 2016, 18, 30053-30060.
41. Willets, K. A.; Duyne, R. P. V. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
42. Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042-4076.
43. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 2011, 111, 3669-3712.
44. Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano 2013, 7, 7157-7164.
45. Yetisen, A. K.; Akram, M. S.; Lowe, C. R. Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip 2013, 13, 2210-2251.
46. Bhanja, P.; Bhaumik, A. Materials with Nanoscale Porosity: Energy and Environmental Applications. Chem Rec 2019, 19, 333-346.
47. Malgras, V.; Tominaka, S.; Ryan, J. W.; Henzie, J.; Takei, T.; Ohara, K.; Yamauchi, Y. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica. J. Am. Chem. Soc. 2016, 138, 13874-13881.
48. Wang, B.; Zhang, C.; Zheng, W.; Zhang, Q.; Bao, Z.; Kong, L.; Li, L. Large-Scale Synthesis of Highly Luminescent Perovskite Nanocrystals by Template-Assisted Solid-State Reaction at 800 °C. Chem. Mater. 2020, 32, 308-314.
49. Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Mater. 2016, 1, 16023.
50. Sreethawong, T.; Yoshikawa, S. Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts. Catal. Commun. 2005, 6, 661-668.
51. Wang, R.; Yang, J.; Chen, X.; Zhao, Y.; Zhao, W.; Qian, G.; Li, S.; Xiao, Y.; Chen, H.; Ye, Y.; Zhou, G.; Pan, F. Highly Dispersed Cobalt Clusters in Nitrogen-Doped Porous Carbon Enable Multiple Effects for High-Performance Li–S Battery. Adv. Energy Mater. 2020, 10, 1903550.
52. Babarao, R.; Dai, S.; Jiang, D.-e. Nitrogen-Doped Mesoporous Carbon for Carbon Capture – A Molecular Simulation Study. J. Phys. Chem. C 2012, 116, 7106-7110.
53. Kong, W.; Liu, J. Ordered mesoporous carbon with enhanced porosity to support organic amines: efficient nanocomposites for the selective capture of CO2. New J. Chem. 2019, 43, 6040-6047.
54. Cox, M.; Mokaya, R. Ultra-high surface area mesoporous carbons for colossal pre combustion CO2 capture and storage as materials for hydrogen purification. Sustain. Energy Fuels 2017, 1, 1414-1424.
55. Liu, L.; Zou, G.; Yang, B.; Luo, X.; Xu, S. Amine-Functionalized Mesoporous Silica @ Reduced Graphene Sandwichlike Structure Composites for CO2 Adsorption. ACS Appl. Nano Mater. 2018, 1, 4695-4702.
56. Juang, R.-S.; Cheng, Y.-W.; Chen, W.-T.; Wang, K.-S.; Fu, C.-C.; Liu, S.-H.; Jeng, R.-J.; Chen, C.-C.; Yang, M.-C.; Liu, T.-Y. Silver nanoparticles embedded on mesoporous-silica modified reduced graphene-oxide nanosheets for SERS detection of uremic toxins and parathyroid hormone. Appl. Surf. Sci. 2020, 521, 146372.
57. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y. Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2016, 120, 24382-24388.
58. Chen, W.-T.; Cheng, Y.-W.; Yang, M.-C.; Jeng, R.-J.; Liu, T.-Y.; Wang, J.-K.; Wang, Y.-L. Mesoporous Silica Nanospheres Decorated by Ag–Nanoparticle Arrays with 5 nm Interparticle Gap Exhibit Insignificant Hot-Spot Raman Enhancing Effect. J. Phys. Chem. C 2019, 123, 18528-18535.
59. Suib, S. L. A Review of Recent Developments of Mesoporous Materials. Chem Rec 2017, 17, 1169-1183.
60. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H. Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chem. Mater. 2018, 30, 8303-8313.
61. Hao, E.; Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 2004, 120, 357-66.
62. 張云柔. 中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及應用. 2019
63. Prasad, K. S.; Chen, J. C.; Ay, C.; Zen, J. M. Mediatorless catalytic oxidation of NADH at a disposable electrochemical sensor. Sensors Actuators B: Chem. 2007, 123, 715-719.
64. Thiyagarajan, N.; Chang, J.-L.; Senthilkumar, K.; Zen, J.-M. Disposable electrochemical sensors: A mini review. Electrochem. Commun. 2014, 38, 86-90.
65. Sudhakara Prasad, K.; Muthuraman, G.; Zen, J.-M. The role of oxygen functionalities and edge plane sites on screen-printed carbon electrodes for simultaneous determination of dopamine, uric acid and ascorbic acid. Electrochem. Commun. 2008, 10, 559-563.
66. Baldwin, R. P.; Thomsen, K. N. Chemically modified electrodes in liquid chromatography detection: A review. Talanta 1991, 38, 1-16.
67. Jiang, D.; Liu, Q.; Wang, K.; Qian, J.; Dong, X.; Yang, Z.; Du, X.; Qiu, B. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosens. Bioelectron. 2014, 54, 273-278.
68. Yusoff, N.; Pandikumar, A.; Marlinda, A. R.; Huang, N. M.; Lim, H. N. Facile synthesis of nanosized graphene/Nafion hybrid materials and their application in electrochemical sensing of nitric oxide. Anal. Methods 2015, 7, 3537-3544.
69. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Capillary flow as the cause of ring stains from dried liquid drops. Nature 1997, 389, 827-829.
70. Li, T.-J.; Yeh, M.-H.; Chiang, W.-H.; Li, Y.-S.; Chen, G.-L.; Leu, Y.-A.; Tien, T.-C.; Lo, S.-C.; Lin, L.-Y.; Lin, J.-J.; Ho, K.-C. Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction. Sensors Actuators B: Chem. 2017, 248, 288-297.
71. Kadara, R. O.; Jenkinson, N.; Banks, C. E. Characterisation of commercially available electrochemical sensing platforms. Sensors Actuators B: Chem. 2009, 138, 556-562.
72. Cao, Q.; Puthongkham, P.; Venton, B. J. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal. Methods 2019, 11, 247-261.
73. Vueba, M. L.; Pina, M. E.; Veiga, F.; Sousa, J. J.; de Carvalho, L. A. Conformational study of ketoprofen by combined DFT calculations and Raman spectroscopy. Int. J. Pharm. 2006, 307, 56-65.
74. Oh, K.; Lee, M.; Lee, S. G.; Jung, D. H.; Lee, H. L. Cellulose nanofibrils coated paper substrate to detect trace molecules using surface-enhanced Raman scattering. Cellulose 2018, 25, 3339-3350.
75. Vidya, H.; Kumara Swamy, B. E.; Schell, M. One step facile synthesis of silver nanoparticles for the simultaneous electrochemical determination of dopamine and ascorbic acid. J. Mol. Liq. 2016, 214, 298-305.
76. Khan, A. F.; Brownson, D. A. C.; Randviir, E. P.; Smith, G. C.; Banks, C. E. 2D Hexagonal Boron Nitride (2D-hBN) Explored for the Electrochemical Sensing of Dopamine. Anal. Chem. 2016, 88, 9729-9737.