研究生: |
單珮雅 Shan, Pei-Ya |
---|---|
論文名稱: |
探討修飾胰島類澱粉蛋白以增強其抗菌活性的可能性 Investigating the possibility of modifying islet amyloid polypeptide to enhance its antibacterial activity |
指導教授: |
杜玲嫻
Tu, Ling-Hsien |
口試委員: |
葉伊純
Yeh, Yi-Cheun 賴韻如 Lai, Yun-Ju 杜玲嫻 Tu, Ling-Hsien |
口試日期: | 2024/06/20 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | 胰島類澱粉蛋白 、抗菌胜肽 、胺基酸取代 、金黃色葡萄球菌 |
英文關鍵詞: | Islet amyloid polypeptide, Antimicrobial peptides, Amino acid substitution, Staphylococcus aureus |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202401257 |
論文種類: | 學術論文 |
相關次數: | 點閱:136 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類胰島類澱粉蛋白(Islet amyloid polypeptide, IAPP)是由37個胺基酸所組成,和胰島素共同由胰腺β細胞所分泌的賀爾蒙胜肽,由於IAPP聚集形成纖維狀沉積物的過程會造成細胞死亡,所以過去曾有文獻報導,IAPP可以作為一種對抗金黃色葡萄球菌的抗菌胜肽使用,起因可能是AMP與膜互相作用後形成孔隙,導致細菌膜破裂進而死亡,這與類澱粉蛋白聚集造成細胞死亡被推測的機制之一類似,因此類澱粉蛋白被認為有作為AMP的潛力,本研究試將以胺基酸替換的方式設計比IAPP抗菌效果更好的AMP。由於AMP多為帶正電荷具兩親性的大分子,我們先以理論計算工具FoldAmyloid計算以帶正電荷的離胺酸(K)取代IAPP不同位點之後的聚集傾向,結果發現將24和33號位的甘胺酸(G)取代為離胺酸後可能不會改變IAPP聚集的特性,並且可能可以增加跟細菌膜的作用,因此我們合成了G33K-IAPP和G24K-IAPP,並透過硫磺素T螢光實驗、圓偏光二色性光譜和穿透式電子顯微鏡驗證這兩條胜肽確實會聚集形成纖維狀沉積物。由抗菌實驗我們發現G33K-IAPP和G24K-IAPP均會抑制金黃色葡萄球菌的生長,並且抗菌效果比IAPP更好。
Human islet amyloid polypeptide (IAPP) is a 37-residue peptide and it is co-secreted with insulin from the pancreatic β-cells. The formation of fibrillar deposits by IAPP may cause β-cell death. In the past, it was also reported that IAPP can be used as antimicrobial peptides (AMP) against Staphylococcus aureus. The mechanism of action of AMP accepted by most people is that they interact with bacterial membranes to form pores, leading to membrane rupture and death. This mechanism of action is similar to the mechanism by which amyloidogenic proteins cause cell death, so amyloidogenic proteins are regarded as AMP potentially. This study aims to design new AMP with better antibacterial effects by appropriate amino acid substitution. AMP are usually cationic (positively charged) and amphipathic. Therefore, we used the theoretical calculation tool FoldAmyloid to calculate the aggregation tendency of IAPP after it was substituted by positively charged lysine (Lys, K) at each residue. It was found that glycine (Gly, G) substitution by Lys at residues 24 and 33 made IAPP retain aggregation tendency. Here, we synthesized two peptides, G33K-IAPP and G24K-IAPP, and verified the aggregation properties of G33K and G24K by using the thioflavin-T fluorescence assay, circular dichroism spectroscopy, and transmission electron microscopy. Through antibacterial experiments, we found that both G33K-IAPP and G24K-IAPP can inhibit the growth of Gram-positive Staphylococcus aureus, and the antibacterial effect is better than IAPP.
(1) Ross, C. A.; Poirier, M. A. Protein aggregation and neurodegenerative disease. Nature Medicine 2004, 10 (7), S10-S17.
(2) Konstantoulea, K.; Louros, N.; Rousseau, F.; Schymkowitz, J. Heterotypic interactions in amyloid function and disease. Febs j 2022, 289 (8), 2025-2046.
(3) Stefanis, L. α-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med 2012, 2 (2), a009399.
(4) Chiti, F.; Dobson, C. M. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 2006, 75, 333-366.
(5) Mukherjee, A.; Morales-Scheihing, D.; Salvadores, N.; Moreno-Gonzalez, I.; Gonzalez, C.; Taylor-Presse, K.; Mendez, N.; Shahnawaz, M.; Gaber, A. O.; Sabek, O. M.; et al. Induction of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. J Exp Med 2017, 214 (9), 2591-2610.
(6) Westermark, P.; Andersson, A.; Westermark, G. T. Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 2011, 91 (3), 795-826.
(7) Stroo, E.; Koopman, M.; Nollen, E. A.; Mata-Cabana, A. Cellular regulation of amyloid formation in aging and disease. Front Neurosci 2017, 11, 64.
(8) Newberry, R. W.; Raines, R. T. Secondary forces in protein folding. ACS Chem Biol 2019, 14 (8), 1677-1686.
(9) Tyedmers, J.; Mogk, A.; Bukau, B. Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 2010, 11 (11), 777-788.
(10) Jarrett, J. T.; Lansbury, P. T., Jr. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 1993, 73 (6), 1055-1058.
(11) Xue, W. F.; Homans, S. W.; Radford, S. E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc Natl Acad Sci U S A 2008, 105 (26), 8926-8931.
(12) Mahboob, A.; Senevirathne, D. K. L.; Paul, P.; Nabi, F.; Khan, R. H.; Chaari, A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023, 225, 318-350.
(13) Makin, O. S.; Serpell, L. C. Structures for amyloid fibrils. Febs j 2005, 272 (23), 5950-5961.
(14) Xi, W.-H.; Wei, G.-H. Amyloid-β peptide aggregation and the influence of carbon nanoparticles. Chin. Phys. B 2016, 25 (1), 18704-018704.
(15) Röder, C.; Kupreichyk, T.; Gremer, L.; Schäfer, L. U.; Pothula, K. R.; Ravelli, R. B. G.; Willbold, D.; Hoyer, W.; Schröder, G. F. Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nat Struct Mol Biol 2020, 27 (7), 660-667.
(16) Clark, A.; Wells, C. A.; Buley, I. D.; Cruickshank, J. K.; Vanhegan, R. I.; Matthews, D. R.; Cooper, G. J.; Holman, R. R.; Turner, R. C. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res 1988, 9 (4), 151-159.
(17) Sciacca, M. F. M.; La Rosa, C.; Milardi, D. Amyloid-mediated mechanisms of membrane disruption. Biophysica 2021, 1 (2), 137-156.
(18) Akter, R.; Cao, P.; Noor, H.; Ridgway, Z.; Tu, L. H.; Wang, H.; Wong, A. G.; Zhang, X.; Abedini, A.; Schmidt, A. M.; et al. Islet amyloid polypeptide: structure, function, and pathophysiology. J Diabetes Res 2016, 2016, 2798269.
(19) Bishoyi, A. K.; Roham, P. H.; Rachineni, K.; Save, S.; Hazari, M. A.; Sharma, S.; Kumar, A. Human islet amyloid polypeptide (hIAPP) - a curse in type II diabetes mellitus: insights from structure and toxicity studies. Biol Chem 2021, 402 (2), 133-153.
(20) Knight, J. D.; Miranker, A. D. Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 2004, 341 (5), 1175-1187.
(21) Sparr, E.; Engel, M. F.; Sakharov, D. V.; Sprong, M.; Jacobs, J.; de Kruijff, B.; Höppener, J. W.; Killian, J. A. Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 2004, 577 (1-2), 117-120.
(22) Khemtémourian, L.; Antoinette Killian, J.; Höppener, J. W. M.; Engel, M. F. M. Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Experimental Diabetes Research 2008, 2008, 421287.
(23) Mirzabekov, T. A.; Lin, M. C.; Kagan, B. L. Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 1996, 271 (4), 1988-1992.
(24) Quist, A.; Doudevski, I.; Lin, H.; Azimova, R.; Ng, D.; Frangione, B.; Kagan, B.; Ghiso, J.; Lal, R. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 2005, 102 (30), 10427-10432.
(25) Demuro, A.; Mina, E.; Kayed, R.; Milton, S. C.; Parker, I.; Glabe, C. G. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 2005, 280 (17), 17294-17300.
(26) Knight, J. D.; Hebda, J. A.; Miranker, A. D. Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry 2006, 45 (31), 9496-9508.
(27) Wang, L.; Liu, Q.; Chen, J. C.; Cui, Y. X.; Zhou, B.; Chen, Y. X.; Zhao, Y. F.; Li, Y. M. Antimicrobial activity of human islet amyloid polypeptides: an insight into amyloid peptides' connection with antimicrobial peptides. Biol Chem 2012, 393 (7), 641-646.
(28) Soscia, S. J.; Kirby, J. E.; Washicosky, K. J.; Tucker, S. M.; Ingelsson, M.; Hyman, B.; Burton, M. A.; Goldstein, L. E.; Duong, S.; Tanzi, R. E.; et al. The Alzheimer's disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS One 2010, 5 (3), e9505.
(29) Spitzer, P.; Condic, M.; Herrmann, M.; Oberstein, T. J.; Scharin-Mehlmann, M.; Gilbert, D. F.; Friedrich, O.; Grömer, T.; Kornhuber, J.; Lang, R.; et al. Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 2016, 6, 32228.
(30) Salinas, N.; Colletier, J. P.; Moshe, A.; Landau, M. Extreme amyloid polymorphism in Staphylococcus aureus virulent PSMα peptides. Nat Commun 2018, 9 (1), 3512.
(31) Olari, L. R.; Bauer, R.; Gil Miró, M.; Vogel, V.; Cortez Rayas, L.; Groß, R.; Gilg, A.; Klevesath, R.; Rodríguez Alfonso, A. A.; Kaygisiz, K.; et al. The C-terminal 32-mer fragment of hemoglobin alpha is an amyloidogenic peptide with antimicrobial properties. Cell Mol Life Sci 2023, 80 (6), 151.
(32) Chen, D.; Liu, X.; Chen, Y.; Lin, H. Amyloid peptides with antimicrobial and/or microbial agglutination activity. Appl Microbiol Biotechnol 2022, 106 (23), 7711-7720.
(33) Van Gerven, N.; Van der Verren, S. E.; Reiter, D. M.; Remaut, H. The role of functional amyloids in bacterial virulence. J Mol Biol 2018, 430 (20), 3657-3684.
(34) Peña-Díaz, S.; Olsen, W. P.; Wang, H.; Otzen, D. E. Functional amyloids: the biomaterials of tomorrow? Adv Mater 2024, e2312823.
(35) Jang, H.; Arce, F. T.; Mustata, M.; Ramachandran, S.; Capone, R.; Nussinov, R.; Lal, R. Antimicrobial protegrin-1 forms amyloid-like fibrils with rapid kinetics suggesting a functional link. Biophys J 2011, 100 (7), 1775-1783.
(36) Gour, S.; Kumar, V.; Singh, A.; Gadhave, K.; Goyal, P.; Pandey, J.; Giri, R.; Yadav, J. K. Mammalian antimicrobial peptide protegrin-4 self assembles and forms amyloid-like aggregates: Assessment of its functional relevance. J Pept Sci 2019, 25 (3), e3151.
(37) Martin, L. L.; Kubeil, C.; Piantavigna, S.; Tikkoo, T.; Gray, N. P.; John, T.; Calabrese, A. N.; Liu, Y.; Hong, Y.; Hossain, M. A.; et al. Amyloid aggregation and membrane activity of the antimicrobial peptide uperin 3.5. Peptide Science 2018, 110 (3), e24052.
(38) Gour, S.; Kaushik, V.; Kumar, V.; Bhat, P.; Yadav, S. C.; Yadav, J. K. Antimicrobial peptide (Cn-AMP2) from liquid endosperm of Cocos nucifera forms amyloid-like fibrillar structure. J Pept Sci 2016, 22 (4), 201-207.
(39) Caillon, L.; Killian, J. A.; Lequin, O.; Khemtémourian, L. Biophysical investigation of the membrane-disrupting mechanism of the antimicrobial and amyloid-like peptide dermaseptin S9. PLoS One 2013, 8 (10), e75528.
(40) Ragonis-Bachar, P.; Rayan, B.; Barnea, E.; Engelberg, Y.; Upcher, A.; Landau, M. Natural antimicrobial peptides self-assemble as α/β chameleon amyloids. Biomacromolecules 2022, 23 (9), 3713-3727.
(41) Sayegh, R. S.; Batista, I. F.; Melo, R. L.; Riske, K. A.; Daffre, S.; Montich, G.; da Silva Junior, P. I. Longipin: an amyloid antimicrobial peptide from the harvestman acutisoma longipes (arachnida: opiliones) with preferential affinity for anionic vesicles. PLoS One 2016, 11 (12), e0167953.
(42) Malekkhaiat Häffner, S.; Malmsten, M. Influence of self-assembly on the performance of antimicrobial peptides. Current Opinion in Colloid & Interface Science 2018, 38, 56-79.
(43) Kumar, P.; Kizhakkedathu, J. N.; Straus, S. K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 2018, 8 (1).
(44) Shang, L.; Li, J.; Song, C.; Nina, Z.; Li, Q.; Chou, S.; Wang, Z.; Shan, A. Hybrid antimicrobial peptide targeting staphylococcus aureus and displaying anti-infective activity in a murine model. Front Microbiol 2020, 11, 1767.
(45) Galdiero, S.; Falanga, A.; Cantisani, M.; Vitiello, M.; Morelli, G.; Galdiero, M. Peptide-lipid interactions: experiments and applications. Int J Mol Sci 2013, 14 (9), 18758-18789.
(46) Fernandez-Escamilla, A. M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 2004, 22 (10), 1302-1306.
(47) de Groot, N. S.; Castillo, V.; Graña-Montes, R.; Ventura, S. AGGRESCAN: method, application, and perspectives for drug design. Methods Mol Biol 2012, 819, 199-220.
(48) Yadav, J. K. Structural and functional swapping of amyloidogenic and antimicrobial peptides: Redefining the role of amyloidogenic propensity in disease and host defense. J Pept Sci 2022, 28 (4), e3378.
(49) Torrent, M.; Valle, J.; Nogués, M. V.; Boix, E.; Andreu, D. The generation of antimicrobial peptide activity: a trade-off between charge and aggregation? Angew Chem Int Ed Engl 2011, 50 (45), 10686-10689.
(50) Gesell, J.; Zasloff, M.; Opella, S. J. Two-dimensional 1H NMR experiments show that the 23-residue magainin antibiotic peptide is an alpha-helix in dodecylphosphocholine micelles, sodium dodecylsulfate micelles, and trifluoroethanol/water solution. J Biomol NMR 1997, 9 (2), 127-135.
(51) Baltutis, V.; O'Leary, P. D.; Martin, L. L. Self-assembly of linear, natural antimicrobial peptides: an evolutionary perspective. Chempluschem 2022, 87 (12), e202200240.
(52) Marcotte, I.; Wegener, K. L.; Lam, Y. H.; Chia, B. C.; de Planque, M. R.; Bowie, J. H.; Auger, M.; Separovic, F. Interaction of antimicrobial peptides from Australian amphibians with lipid membranes. Chem Phys Lipids 2003, 122 (1-2), 107-120.
(53) Nguyen, L. T.; Haney, E. F.; Vogel, H. J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 2011, 29 (9), 464-472.
(54) Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J.; Taddei, N.; Ramponi, G.; Dobson, C. M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416 (6880), 507-511.
(55) Hirakura, Y.; Carreras, I.; Sipe, J. D.; Kagan, B. L. Channel formation by serum amyloid A: a potential mechanism for amyloid pathogenesis and host defense. Amyloid 2002, 9 (1), 13-23.
(56) Walsh, P.; Vanderlee, G.; Yau, J.; Campeau, J.; Sim, V. L.; Yip, C. M.; Sharpe, S. The mechanism of membrane disruption by cytotoxic amyloid oligomers formed by prion protein(106-126) is dependent on bilayer composition. J Biol Chem 2014, 289 (15), 10419-10430.
(57) Zhang, M.; Zhao, J.; Zheng, J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. Soft Matter 2014, 10 (38), 7425-7451.
(58) Khodaparast, L.; Khodaparast, L.; Gallardo, R.; Louros, N. N.; Michiels, E.; Ramakrishnan, R.; Ramakers, M.; Claes, F.; Young, L.; Shahrooei, M.; et al. Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. Nat Commun 2018, 9 (1), 866.
(59) Kravchenko, S. V.; Domnin, P. A.; Grishin, S. Y.; Panfilov, A. V.; Azev, V. N.; Mustaeva, L. G.; Gorbunova, E. Y.; Kobyakova, M. I.; Surin, A. K.; Glyakina, A. V.; et al. Multiple antimicrobial effects of hybrid peptides synthesized based on the sequence of ribosomal S1 protein from Staphylococcus aureus. Int J Mol Sci 2022, 23 (1).
(60) Egorov, V. V.; Matusevich, O. V.; Shaldzhyan, A. A.; Skvortsov, A. N.; Zabrodskaya, Y. A.; Garmay, Y. P.; Landa, S. B.; Lebedev, D. V.; Zarubayev, V. V.; Sirotkin, A. K.; et al. Structural features of the peptide homologous to 6-25 fragment of Influenza A PB1 protein. Int J Pept 2013, 2013, 370832.
(61) Zabrodskaya, Y. A.; Lebedev, D. V.; Egorova, M. A.; Shaldzhyan, A. A.; Shvetsov, A. V.; Kuklin, A. I.; Vinogradova, D. S.; Klopov, N. V.; Matusevich, O. V.; Cheremnykh, T. A.; et al. The amyloidogenicity of the influenza virus PB1-derived peptide sheds light on its antiviral activity. Biophys Chem 2018, 234, 16-23.
(62) Moir, R. D.; Lathe, R.; Tanzi, R. E. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement 2018, 14 (12), 1602-1614.
(63) Grishin, S. Y.; Domnin, P. A.; Kravchenko, S. V.; Azev, V. N.; Mustaeva, L. G.; Gorbunova, E. Y.; Kobyakova, M. I.; Surin, A. K.; Makarova, M. A.; Kurpe, S. R.; et al. Is it possible to create antimicrobial peptides based on the amyloidogenic sequence of ribosomal S1 protein of P. aeruginosa? Int J Mol Sci 2021, 22 (18).
(64) Garbuzynskiy, S. O.; Lobanov, M. Y.; Galzitskaya, O. V. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 2010, 26 (3), 326-332.
(65) Oliveberg, M. Waltz, an exciting new move in amyloid prediction. Nat Methods 2010, 7 (3), 187-188.
(66) Walsh, I.; Seno, F.; Tosatto, S. C.; Trovato, A. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 2014, 42 (Web Server issue), W301-307.
(67) Merrifield, R. B. Solid-phase peptide synthesis. Adv Enzymol Relat Areas Mol Biol 1969, 32, 221-296.
(68) Duro-Castano, A.; Conejos-Sánchez, I.; Vicent, M. J. Peptide-based polymer therapeutics. Polymers 2014, 6 (2), 515-551.
(69) Palasek, S. A.; Cox, Z. J.; Collins, J. M. Limiting racemization and aspartimide formation in microwave-enhanced Fmoc solid phase peptide synthesis. J Pept Sci 2007, 13 (3), 143-148.
(70) Overview of HPLC:What is HPLC?Fig.3 An Example of HPLC Separation https://www.shimadzu.eu/service-support/technical-support/liquid-chromatography/overview/overview_of_lc.html. 2021.
(71) Canene-Adams, K. Reverse-phase HPLC analysis and purification of small molecules. Methods Enzymol 2013, 533, 291-301.
(72) Roepstorff, P. MALDI-TOF mass spectrometry in protein chemistry. Exs 2000, 88, 81-97.
(73) Leszyk, J. D. Evaluation of the new MALDI matrix 4-chloro-alpha-cyanocinnamic acid. J Biomol Tech 2010, 21 (2), 81-91.
(74) Torres-Sangiao, E.; Leal Rodriguez, C.; García-Riestra, C. Application and perspectives of MALDI-TOF mass spectrometry in clinical microbiology laboratories. Microorganisms 2021, 9 (7).
(75) Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C. Measurement of protein using bicinchoninic acid. Anal Biochem 1985, 150 (1), 76-85.
(76) Lewies, A. An in vitro evaluation of the antibacterial and anticancer properties of the antimicrobial peptide nisin Z. 2018.
(77) Galzitskaya, O. V.; Garbuzynskiy, S. O.; Lobanov, M. Y. Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2006, 2 (12), e177.
(78) Ban, T.; Hamada, D.; Hasegawa, K.; Naiki, H.; Goto, Y. Direct observation of amyloid fibril growth monitored by thioflavin T fluorescence. J Biol Chem 2003, 278 (19), 16462-16465.
(79) Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-1412.
(80) Wei, Y.; Thyparambil, A. A.; Latour, R. A. Protein helical structure determination using CD spectroscopy for solutions with strong background absorbance from 190 to 230nm. Biochim Biophys Acta 2014, 1844 (12), 2331-2337.
(81) Bredehöft, J. H.; Jones, N. C.; Meinert, C.; Evans, A. C.; Hoffmann, S. V.; Meierhenrich, U. J. Understanding photochirogenesis: solvent effects on circular dichroism and anisotropy spectroscopy. Chirality 2014, 26 (8), 373-378.
(82) Micsonai, A.; Moussong, É.; Wien, F.; Boros, E.; Vadászi, H.; Murvai, N.; Lee, Y. H.; Molnár, T.; Réfrégiers, M.; Goto, Y.; et al. BeStSel: webserver for secondary structure and fold prediction for protein CD spectroscopy. Nucleic Acids Res 2022, 50 (W1), W90-w98.
(83) Gras, S. L.; Waddington, L. J.; Goldie, K. N. Transmission electron microscopy of amyloid fibrils. Methods Mol Biol 2011, 752, 197-214.
(84) University of Gothenburg, Core Facilities, TEM sample preparation techniques, Negative staining, Figure 1: Negative staining principle as exemplified by extracellular vesicles.https://www.gu.se/en/core-facilities/tem-sample-preparation-techniques#negative-staining. 2021.
(85) Cotton, G. C.; Lagesse, N. R.; Parke, L. S.; Meledandri, C. J. 3.04 - Antibacterial nanoparticles. In Comprehensive Nanoscience and Nanotechnology (Second Edition), Andrews, D. L., Lipson, R. H., Nann, T. Eds.; Academic Press, 2019; pp 65-82.
(86) Kaushik, R.; Tripathi, S.; Bose, S. A review of antimicrobial air filters over normal air filters: unique insights on SARS-CoV-2 virus deactivation. In Indoor Environmental Quality, Singapore, 2024; Kulshreshtha, P., Chinthala, S., Kumar, P., Aggarwal, B., Eds.; Springer Nature Singapore: pp 145-162.
(87) Guerrero Correa, M.; Martínez, F. B.; Vidal, C. P.; Streitt, C.; Escrig, J.; de Dicastillo, C. L. Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein J Nanotechnol 2020, 11, 1450-1469.
(88) Zorko, M.; Jerala, R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemother 2008, 62 (4), 730-737.
(89) Wood, S. J.; Miller, K. A.; David, S. A. Anti-endotoxin agents. 1. Development of a fluorescent probe displacement method optimized for the rapid identification of lipopolysaccharide-binding agents. Comb Chem High Throughput Screen 2004, 7 (3), 239-249.
(90) Williamson, J. A.; Miranker, A. D. Direct detection of transient alpha-helical states in islet amyloid polypeptide. Protein Sci 2007, 16 (1), 110-117.
(91) Wei, L.; Jiang, P.; Yau, Y. H.; Summer, H.; Shochat, S. G.; Mu, Y.; Pervushin, K. Residual structure in islet amyloid polypeptide mediates its interactions with soluble insulin. Biochemistry 2009, 48 (11), 2368-2376.
(92) Cao, P.; Meng, F.; Abedini, A.; Raleigh, D. P. The ability of rodent islet amyloid polypeptide to inhibit amyloid formation by human islet amyloid polypeptide has important implications for the mechanism of amyloid formation and the design of inhibitors. Biochemistry 2010, 49 (5), 872-881.
(93) Zidovetzki, R.; Rost, B.; Armstrong, D. L.; Pecht, I. Transmembrane domains in the functions of Fc receptors. Biophys Chem 2003, 100 (1-3), 555-575.
(94) Moorthy, K.; Chang, K. C.; Wu, W. J.; Hsu, J. Y.; Yu, P. J.; Chiang, C. K. Systematic evaluation of antioxidant efficiency and antibacterial mechanism of bitter gourd extract stabilized silver nanoparticles. Nanomaterials (Basel) 2021, 11 (9).
(95) Mai, X. T.; Huang, J.; Tan, J.; Huang, Y.; Chen, Y. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. J Pept Sci 2015, 21 (7), 561-568.
(96) Leiro, V.; Moreno, P. M.; Sarmento, B.; Durão, J.; Gales, L.; Pêgo, A. P.; Barrias, C. C. 1 - Design and preparation of biomimetic and bioinspired materials. In Bioinspired Materials for Medical Applications, Rodrigues, L., Mota, M. Eds.; Woodhead Publishing, 2017; pp 1-44.
(97) Javadpour, M. M.; Eilers, M.; Groesbeek, M.; Smith, S. O. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophysical Journal 1999, 77 (3), 1609-1618.
(98) Heifetz, A.; Barker, O.; Morris, G. B.; Law, R. J.; Slack, M.; Biggin, P. C. Toward an understanding of agonist binding to human Orexin-1 and Orexin-2 receptors with G-protein-coupled receptor modeling and site-directed mutagenesis. Biochemistry 2013, 52 (46), 8246-8260.
(99) Latham, K. Biology Dictionary, Gram-Positive vs. Gram-Negative Fig.3 Cell wall structure in gram-positive vs. gram-negative bacteria
https://biologydictionary.net/gram-positive-vs-gram-negative/. 2021.
(100) Li, J.; Koh, J. J.; Liu, S.; Lakshminarayanan, R.; Verma, C. S.; Beuerman, R. W. Membrane active antimicrobial peptides: translating mechanistic insights to design. Front Neurosci 2017, 11, 73.
(101) Torcato, I. M.; Huang, Y. H.; Franquelim, H. G.; Gaspar, D.; Craik, D. J.; Castanho, M. A.; Troeira Henriques, S. Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria. Biochim Biophys Acta 2013, 1828 (3), 944-955.