簡易檢索 / 詳目顯示

研究生: 廖邦捷
Ban-Chieh Liao
論文名稱: 擴增型態與引導策略對高中電化學反應課程學習成效與動機之影響
The Effects of Augmented Reality Types and Guiding Strategies on Senior High School Students' Performance and Motivation of Electrochemistry Course
指導教授: 陳明溥
Chen, Ming-Puu
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 116
中文關鍵詞: 擴增實境實驗遊戲擴增型態引導策略體驗式學習
英文關鍵詞: Augmented reality experimental game, augmented reality types, guiding strategies, experimental learning
論文種類: 學術論文
相關次數: 點閱:276下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討在不同擴增型態的學習環境下(靜態擴增、動態擴增)與不同引導策略(程序引導、問題引導)對高中一年級學習者電化學反應課程的學習成效和化學學習動機之影響。研究對象為普通高中一年級學習者,有效樣本為152人參與實驗教學。本實驗採用因子設計之準實驗研究法,自變項包含擴增型態與引導策略。擴增型態依照不同擴增實境呈現方式分為「靜態擴增」與「動態擴增」兩種型態,引導策略則分為「程序引導」以及「問題引導」兩種策略;依變項則包含電化學反應概念學習成效與化學學習動機。
    研究結果顯示:(1)在知識應用面向,靜態擴增的學習環境中,程序引導組學習者學習電化學反應課程在知識應用向度高於問題引導組學習者;(2)在知識理解面向,靜態擴增之學習環境學習電化學反應概念優於在動態擴增之學習環境,且使用程序引導學習電化學反應概念優於使用問題引導;及(3)在不同擴增型態之學習環境進行學習皆持正向的動機表現;其中靜態擴增組學習者比動態擴增組學習者有較高的參與動機表現。

    The purpose of this study was to investigate the effects of augmented reality types and guiding strategies on senior high school students’ performance and motivation of electrochemistry course. The participants were 152 freshmen of senior high school. A quasi-experimental design was employed and the independent variables were type of augmented reality and type of guidance strategy. The augmented reality types included the static augmented reality and the dynamic augmented reality, while the guiding strategies were the procedural guidance and the question guidance. The dependent variables were learning performance and learning motivation toward Chemistry.
    The results revealed that (a) while receiving the static augmented reality learning, the procedural guidance group achieved better learning application performance than the question guidance group; (b) as for the knowledge understanding performance, the static augmented reality group outperformed the dynamic augmented reality group, and the procedural guidance group outperformed the question guidance group; and (c) students showed positive motivation toward learning Chemistry no matter which augmented reality type they used, especially students who used the static augmented reality revealed higher motivation than those who used the dynamic augmented reality.

    附表目錄 VI 附圖目錄 VII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 4 第三節 研究範圍與限制 5 第四節 重要名詞釋義 7 第二章 文獻探討 9 第一節 化學教育 9 第二節 體驗式學習 11 第三節 數位學習 15 第四節 引導策略 22 第三章 研究方法 26 第一節 研究對象 26 第二節 研究設計 27 第三節 實驗流程 45 第四節 研究工具 47 第五節 資料處理與分析 50 第四章 結果與討論 54 第一節 電化學反應課程學習成效分析 54 第二節 化學學習動機分析 61 第五章 結論與建議 73 第一節 結論 73 第二節 建議 77 參考文獻 80 附錄一 電化學反應實驗程序引導學習單 87 附錄二 電化學反應實驗問題引導學習單 93 附錄三 電化學反應課程先備知識測驗卷 100 附錄四 電化學反應課程學習成效測驗卷 106 附錄五 化學學習動機問卷 112

    中文部分

    丁鋐鎰(2001)。國中氧化還原概念之精熟學習研究。國立台灣師範大學化學研究所碩士論文。國立台灣師範大學,台北市。
    李瓊慧(2002)。以凱利方格法探究國三學生電化學迷思概念。國立台灣師範大學科學教育研究所碩士論文。未出版碩士論文,國立台灣師範大學,台北市。
    吳雪菁(2002)。資訊科技融入教學對學生在電化電池概念改變之研究。國立高雄師範大學化學研究所碩士論文。未出版碩士論文,國立高雄師範大學,高雄市。
    邱美子(2002)。國中電化學電腦動畫輔助教學之學習成效研究。國立台灣師範大學化學研究所碩士論文。未出版碩士論文,國立台灣師範大學,台北市。
    郭順利(1998)。高中學生在電化學的錯誤概念。國立台灣師範大學化學研究所碩士論文。未出版碩士論文,國立台灣師範大學,台北市。
    陳佩琪(2013)。引導發現原則之學習單與完成範例效應之學習單對國三學生「直流電路串並聯」學習成效與認知負荷之影響。佛光大學學習與數位科技學習碩士班碩士論文。佛光大學,宜蘭縣。
    張惠博(1993)。邁向科學探究的實驗教學。教師天地,62,12-20。
    張秀澂(2002)。電腦動畫融入教學對國中生電化學學習成就影響之研究。國立台灣師範大學化學研究所碩士論文。未出版碩士論文,國立台灣師範大學,台北市。
    廖焜熙(2001)。中學理化教科書教材內容研究之回顧與分析。科學教育,237,2-7。
    劉昌宏、郭重吉(1995)。教科書在國中理化教學中的應用之個案研究。科學教育,6,89-112。
    劉漢欽(2006)。大學生如何應用電腦模擬學習電化學概念之研究。高雄師大學報,20,23-42。 
    英文部分

    Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and Virtual Environments, 6(4), 355-385.
    Alessi, S. M., & Trollip, S. R. (2001). Multimedia for learning: Methods and development (3rd ed.). Boston, MA: Allyn & Bacon.
    Appelman, R. (2005). Experiential modes: A common ground for serious game designers. International Journal of Continuing Engineering Education and Life‐long Learning, 15(3‐6), 240‐251.
    Adcock, A. (2008). Making digital game-based learning working: An instructional designer’s perspective. Library Media Connection, 26(5), 56-57.
    Akdemir, O., & Koszalka, T. A. (2008). Investigating the relationships among instructional strategies and learning styles in online environments. Computers & Education, 50(4), 1451-1461.
    Alcañiz, M., Contero, M., Pérez-López, D. C., & Ortega, M. (2010). Augmented reality technology for education. New Achievements in Technology Education and Development, 247-256.
    Abdulwahed, M. & Nagy, Z. K. (2011). The trilab, a novel ICT based triple access mode laboratory education model. Computers & Education, 56(1), 262-274.
    Arslan, H. O., Moseley, C., & Cigdemoglu, C. (2011). Taking attention on environmental issues by an attractive educational game: Enviropoly. Procedia-Social and Behavioral Sciences, 28, 801-806.
    Blosser, P. E. (1987). Science misconceptions research and some implication for the teaching of science to elementary school students. ERIC(ED282776).
    Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.
    Behzadan, A. H., & Kamat, V. R. (2013). Enabling discovery-based learning in construction using telepresent augmented reality. Automation in Construction, 33, 3-10.
    Crawford, C. (1984). The art of computer game design. Los Angeles: Osborne/McGraw‐Hill.
    Connolly, T. M., Stansfield, M., & Hainey, T. (2007). An application of games-based learning within software engineering. British Journal of Educational Technology, 38(3), 416–428.
    Cadavieco, J. F., Goulao, M. D. F., & Costales, A. F. (2012). Using augmented reality and m-learning to optimize students’ performance in higher education. Procedia Social and Behavior Sciences, 46, 2970-2977.
    Craig, A. B. (2013). Understanding augmented reality: Concepts and applications. Elsevier.
    Cai, S., Wang, X., & Chiang, F. K. (2014). A case study of augmented reality simulation system application in chemistry coursr. Computers in Human Behavior, 37, 31-40.
    Dewey, J. (1938). Experience and education. New York: Macmillianco.
    De Vos, W., Bulte, A. M. W., & Pilot, A. (2002). Chemistry curricula for general education: Analysis and elements of a design. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust & J. H. Van Driel (Eds.), Chemical education: Towards research-based practice, 101-124. Dordrecht, the Netherlands: Kluwer Academic Press.
    Donderi, D. C. (2006). Visual complexity: A review. Psychological Bulletin, 132, 73-97.
    Dean, D., & Kuhn, D. (2006). Direct instruction vs. discovery: The long view. Science Education, 91(3), 384-397.
    Demircioglu, H., Demircioglu, G. & Calik, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the Periodic Table. Chemistry Education Research and Practice, 10(3), 241-249.
    Darabi, A., Arrastia, M. C., Nelson, W. D., Cornille, T. & Liang, X. (2011). Cognitive presence in asynchronous online learning: a comparison of four different strategies. Journal of Computer Assisted Learning, 27, 216-227.
    Enyedy, N., Danish, J. A., Delacruz, G., & Kumar, M. (2012). Learning physics through play in an augmented reality environment. International Journal of Computer-Supported Collaborative Learning, 7(3), 347-378.
    Gagné, R. M. (1985). The conditions of learning and theory of instruction (4th ed.). New York, N. Y.: Holt, Rinehart and Winston.
    Gunstone, R. F. (1991). Reconstructing theory from practical experience. Practical Science, 46(1), 37-42.
    Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electrochemical (galvanic) and electrolytic cells. Journal of Research in Science Teaching, 29(10), 1079-1099.
    Gee, J. P. (2003). What video games have to teach us about learning and literacy. ACM computeres in Entertainment. 1(1), 1-4.
    Gros, B. (2007). Digital games in education: The design of game-based learning environment. Journal of Research on Technology in Education, 40(1), 23-38.
    Helm, P. (1980). Misconceptions in physics amongst South Africa students. Physics Education, 15(2), 92-97.
    Horii, H., & Miyajima, Y. (2013). Augmented reality-based support system for teaching hand-drawn mechanical drawing. Procedia Social and Behavior Sciences, 103, 174-180.
    Homer, B. D. & Plass, J. L. (2014). Level of interactivity and executive functions as predictors of learning in computer-based chemistry simulations. Computers in Human Behavior, 36, 365-375.
    Imbert, N., Vignat, F., Kaewrat, C., & Boonbrahm, P. (2013). Adding physical properties to 3D models in augmented reality for realistic interactions experiments. Procedia Computer Science, 25 364-369.
    Ibáñez, M. B., Serio, A. D., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and education effectiveness. Computers & Education, 71, 1-13.
    Kolb, D. A. (1984). Experiential learning: Experience as source of learning and development. Prentice-Hall, Inc., Englewood Cliffs, N. J.
    Kofman, F. (1992). Lecture Slides. Cambridge MA: MIT Sloan School of Management.
    Kaufmann, H., & Schmalstieg, D. (2003). Mathematics and geometry education with collaborative augmented reality. Computers & Graphics, 27(3), 339-345.
    Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661-667.
    Kiili, K. (2005). Digital game-based learning: Towards an experiential gaming model. Internet and Higher Education, 8(1), 13–24.
    Kuhn, D., & Dean, D. (2005). Is developing scientific thinking all about learning to control variables? Psychological Science, 16(11), 866-870.
    Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
    Ke, F. (2008). Alternative goal structures for computer game-based learning. International Journal of Computer-Supported Collaborative Learning, 3(4), 429-445.
    Karal, H., & Reisoglu, I. (2009). Haptic's suitability to constructivist learning environment: aspects of teachers and teacher candidates. Procedia-Social and Behavioral Sciences, 1(1), 1255-1263.
    Kose, U., Koc, D., & Yucesoy, S. A. (2013). An augmented reality based mobile software to support learning experiences in computer science courses. Procedia Computer Science, 25, 370-374.
    Konak, A., Clark, T. K., & Nasereddin, M. (2014). Using Kolb’s experiential learning cycle to improve student learning in virtual computer laboratories. Computers & Education, 72, 11-22.
    Lockard, J., Abrams, P. D., & Many, W. A. (1997). Microcomputers for Twenty-First Century Educators. Longman, New York.
    Lee, S., Lee, J., Lee, A., Park, N., Lee, S., Song, S., Seo, A., Lee, H., Kim, J. I., & Eom, K. (2013). Augmented reality intravenous injection simulator based 3D medical imaging for veterinary medicine. The Veterinary Journal, 196, 197-202.
    Luis, C. E. M., Mellado, R. C., & Díaz, B. A. (2013). PBL methodologies with embedded augmented reality in higher maritime education: Augmented project definitions for chemistry practices. Procedia Computer Science, 25, 402-405.
    Mayer, R. E. & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38(1), 43-52.
    Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59(1), 14–19.
    Mayer, R. E. (2009). Multimedia learning (2nd ed). New York: Cambridge University Press.
    Matlen, B. J., & Klahr, D. (2010). Sequential effects of high and low guidance on children's early science learning. ICLS '10 Proceedings of the 9th International Conference of the Learning Sciences, 1, 1016-1023.
    Martín-Gutiérrez, J., Luís Saorín, J., Contero, M., Alcañiz, M., Pérez-López, D. C., & Ortega, M. (2010). Design and validation of an augmented book for spatial abilities development in engineering students. Computers & Graphics, 34 (1), 77-91.
    Morrison, A., Mulloni, A., Lemmelä, S., Oulasvirta, A., Jacucci, G., Peltonen, P., Schmalstieg, D., & Regenbrecht, H. (2011). Collaborative use of mobile augmented reality with paper maps. Computers & Graphics, 35(4), 789-799.
    Martin-Gutierrez, J., Guinters, E. & Perez-Lopez, D. (2012). Improving strategy of self-learning in engineering: Laboratories with augmented reality. Procedia Social and Behavior Sciences, 51, 832-839.
    Matlen, B. J., & Klahr, D. (2013). Sequential effects of high and low guidance on children's acquisition of experimentation skills Is it all in the timing. Instructional sequence, 41(3), 621-634.
    Nikou, C., Digioia III, A. M., Blackwell, M., Jaramaz, B., & Kanade, T. (2000). Augmented reality imaging technology for orthopaedic surgery. Operative Techniques in Orthopaedics, 10(1), 82-86.
    Nincarean, D., Alia, M. B., Halim, N. D. A. & Rahman, M. H. A. (2013). Mobile Augmented Reality: the potential for education. Procedia - Social and Behavioral Sciences, 103(26), 657-664.
    O’Neil, H. F., Chung, G. K. W. K., Kerr, D., Vendlinski, T. P., Buschang, R. E., & Mayer, R. E. (2014). Adding self-explanation prompt to an education computer game. Computers in Human Behavior, 30, 23-28.
    Prensky, M. (2001). Digital game-based learning. New York: McGraw-Hill.
    Rastegarpour, H., & Marashi, P. (2011). The effect of card games and computer games on learning of chemistry concepts. Procedia-Social and Behavioral Sciences, 31, 597-601.
    Schein, E. H. (1993), How Can Organizations Learn Faster? The Challenge of Entering the Green Room, Sloan Management Review, 34(2):85-92.
    Sweeters, W. (1994). Multimedia electronic tools for learning. Educational Technology, 34(5), 47-52.
    Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(4), 377-398.
    Squire, K. (2003). Video games in education. International Journal of Intelligent Simulations and Gaming, 2(1), 49-62.
    Salen, K., & Zimmerman, E. (2004). Rules of Play. Harvard, MA: MIT Press.
    Schwartz, D. L., Chase, C. C., Oppezzo, M. A., & Chin, D. B. (2011). Practicing versus inventing with contrasting cases: The effects of telling first on learning and transfer. Journal of Educational Psychology, 103(4), 759-775.
    Sesen, B. A., & Tarhan, L. (2013). Inquiry-based laboratory activities in electrochemistry: High school students’ achievements and attitudes. Research in Science Education, 43(1), 413-435.
    Souza-Concilio, I. D. A. & Pacheco, B. A. (2013).The development of augmented reality systems in informatics higher education. Procedia Computer Science, 25 179-188.
    Tarhan, L. & Sesen, B. A. (2010). Investigation the effectiveness of laboratory works related to “acids and bases” on learning achievements and attitudes toward laboratory. Procedia - Social and Behavioral Sciences, 2(2), 2631-2636.
    Van Eck, R. (2007). Six ideas in search of a discipline. In B.E. Shelton & D.A. Wiley(Eds.) The design and use of simulation computer games in education (pp.31-56). Rotterdam: Sense Publishers.
    Yu, F. Y., Chang, L. J., Liu, Y. H., & Chan T. W. (2002). Learning preferences towards computerised competitive modes. Journal of Computer Assisted Learning, 18(3), 341-350.
    Yen, J. C., Tsai, C. H., & Wu, M. (2013). Augmented reality in the higher education: Students’ science concept learning and academic achievement in astronomy. Procedia Social and Behavior Sciences, 103, 165-173.

    下載圖示
    QR CODE