簡易檢索 / 詳目顯示

研究生: 陳安潔
Chen, An-Jie
論文名稱: 利用密度泛函理論計算方法探討二氧化碳還原反應在銅與金銀鋅合金及銅氧化物的催化反應機制
Mechanistic Study of Catalytic CO2 Reduction Reaction on CuM1M2 (M1, M2 = Au, Ag, Zn) Alloys and CuOx by Density Functional Theory Calculation
指導教授: 王禎翰
Wang, Jeng-Han
口試委員: 王冠文
Wang, Kuan-Wen
洪偉修
Hung, Wei-Hsiu
王禎翰
Wang, Jeng-Han
口試日期: 2021/06/18
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 93
中文關鍵詞: 密度泛函理論二氧化碳還原反應二元合金三元合金氧修飾銅催化劑應變效應配位基效應
英文關鍵詞: Density functional theory (DFT), CO2 reduction reaction (CO2RR), Binary alloy, Ternary alloy, Oxygen modified Cu catalyst, Strain effect, Ligand effect
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202100765
論文種類: 學術論文
相關次數: 點閱:110下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料的過度使用導致二氧化碳含量不斷上升,危害了我們的環境及改變我們的氣候,因此有效地降低及利用二氧化碳是刻不容緩的議題。本篇研究我們將藉由密度泛函理論計算方法系統性地探討二氧化碳還原反應在以銅為基底之電催化劑其催化反應機制。
    在本篇研究的第一部分,我們探討了二氧化碳還原反應在銅金合金、銅銀合金以及銅鋅合金等雙金屬催化劑生成一氧化碳的反應機制。結果顯示透過應變效應及配位基效應的作用下,可以改變重要中間產物COOH、CO及H的吸附能,進而改變反應催化效果。在這些雙金屬催化劑之中,銅金合金能有效地提升COOH吸附能及降低CO及H的吸附能,提升二氧化碳還原反應及降低產氫反應的進行,且透過相同機制,我們發現銅銀鋅三元合金比二元合金又能有更好的催化效果。
    在本篇研究的第二部分,我們則是探討二氧化碳還原反應在以氧修飾之銅催化劑利用碳碳耦合形成二碳產物之反應機制。我們在此詳細地探討二氧化碳還原形成OCCHO中間產物在純銅(111)表面,以及當含有表面氧或含有次表面氧的銅表面之可能反應的路徑。結果顯示次表面氧的加入可以有效地提升反應的活性,然而表面氧反而會降低反應活性,其提升或降低催化活性的主要原因為表面銅價態的改變所造成。

    To effectively reduce and utilize CO2 is an urgent and important topic as enormous CO2 emission from the overuse of fossil fuels detrimentally damage our environment and change our climate. In the present study, we systematically examined the reaction mechanism of catalytic CO2 reduction reaction (CO2RR) on Cu-based electrocatalysts by density functional theory calculation.
    In the first part of this thesis, we investigated the mechanism of CO2RR for the production of CO on CuAu, CuAg and CuZn bimetals. Through the strain and ligand effects, the adsorption energies of key intermediates, COOH, CO and H, have been altered to enhance the catalytic activity. Among them, CuAu can effectively strengthen the adsorptions of COOH and weaken the adsorptions of CO and H to promote CO2RR and demote hydrogen evolution reaction (HER). Following the same mechanism, we optimized CuAgZn trimetals to further achieve better activity than the bimetallic catalysts.
    In the second part of this thesis, we studied the mechanisms of CO2RR with C-C coupling forming C2 products on oxygen modified Cu catalysts. The reaction pathways from CO2 to OCCHO have been thoroughly examined on clean Cu(111) surface and with surface and subsurface oxygen. The results showed that the subsurface oxygen can effectively promote the activity, whereas surface oxygen likely to demote it. The enhancement or reduction of the catalytic activity are mainly attributable to the valance states of surface Cu.

    謝誌 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 前言 1 1-2 二氧化碳還原反應 (CO2 reduction reaction, CO2RR) 2 1-3 電催化劑之設計 3 1-3-1 純金屬催化劑 4 1-3-2 雙金屬催化劑 5 1-3-3 氧化銅衍生催化劑 (Oxide-derived Copper Catalyst, OD-Cu) 6 第二章 理論計算原理 8 2-1 密度泛函理論 (Density Functional Theory, DFT) 8 2-1-1 Thomas-Fermi-Dirac模型 8 2-1-2 Hohenberg-Kohn定理 9 2-1-3 Kohn-Sham方程 10 2-1-4 交換關聯函數 (Exchange-correlation function) 11 2-2 固態表面材料計算理論基礎 12 2-2-1 基底函數組 (Basis set) 12 2-2-2 贋勢 (Pseudopotential) 12 2-2-3 投影綴加波 (Projector Augmented Wave, PAW) 13 2-2-4 布洛赫定理 (Bloch's Theorem) 13 2-2-5 自洽計算 (Self-consistent calculation) 14 2-3 系統與軟體 15 2-3-1 國家高速網路與計算中心 (NCHC) 15 2-3-2 Vienna Ab initio Simulation Package (VASP) 15 2-4 計算參數設定 16 第三章 二元及三元銅合金催化劑在二氧化碳還原反應的機制探討 17 3-1 Cu-M (M=Au, Ag, Zn) 反應機制探討 17 3-1-1 研究動機 17 3-1-2 表面模型建立及電子結構分析 18 3-1-2-1 表面模型 18 3-1-2-2 表面晶格常數 20 3-1-2-3 表面Bader電荷分析 21 3-1-2-4 表面態密度分析 23 3-1-3 Cu-M在二氧化碳還原反應的反應路徑 24 3-1-4 Cu-M在產氫反應的反應路徑 24 3-1-5 吸附物之吸附能比較分析 25 3-1-6 反應性及產物選擇性探討 35 3-1-6-1 Cu-M於二氧化碳還原反應之反應性探討 36 3-1-6-2 Cu-M於產氫反應之反應性探討 37 3-1-6-3 Cu-M之產物選擇性探討 38 3-2 Cu(14-x)AgxZn2反應機制探討 39 3-2-1 研究動機 39 3-2-2 表面模型建立及電子結構分析 39 3-2-2-1 表面模型 39 3-2-2-2 表面晶格常數 40 3-2-2-3 表面態密度分析 41 3-2-3 吸附物之吸附能比較分析 42 3-2-4 反應性及產物選擇性探討 49 3-2-4-1 Cu(14-x)AgxZn2於二氧化碳還原反應之反應性探討 49 3-2-4-2 Cu(14-x)AgxZn2於產氫反應之反應性探討 51 3-2-4-3 Cu(14-x)AgxZn2之產物選擇性探討 52 3-3 第二元及第三元金屬加入對反應影響原因探討 52 3-4 結論 57 第四章 以表面氧及次表面氧修飾銅催化劑在二氧化碳還原反應的機制探討 58 4-1 研究動機 58 4-2 Cu-O表面模型建立及電子結構分析 58 4-2-1 表面模型 58 4-2-2 表面Bader電荷分析 60 4-2-3 表面態密度分析 61 4-3 Cu-O在二氧化碳還原反應可能反應路徑 63 4-4 Cu-O吸附物之吸附能比較分析 65 4-5 Cu-O反應路徑及反應性探討 78 4-5-1 Cu-O於二氧化碳還原反應之反應性探討 78 4-5-2 Cu-O於產氫反應之反應性探討 85 4-6氧的加入對反應性影響原因探討 86 4-7結論 87 第五章 未來展望 88 參考文獻 89

    1. Eisenberg, R., H.B. Gray, and G.W. Crabtree, Addressing the challenge of carbon-free energy. Proceedings of the National Academy of Sciences, 2020. 117(23): p. 12543-12549.
    2. Li, M., et al., Heterogeneous Single‐Atom Catalysts for Electrochemical CO2 Reduction Reaction. Advanced Materials, 2020. 32(34): p. 2001848.
    3. Long, C., et al., Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: recent progress and perspectives. Small Methods, 2019. 3(3): p. 1800369.
    4. Cai, Z., et al., Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019. 12(2): p. 345-349.
    5. Vickers, J.W., D. Alfonso, and D.R. Kauffman, Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials. Energy Technology, 2017. 5(6): p. 775-795.
    6. Wu, J., et al., CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 2017. 4(11): p. 1700194.
    7. Hori, Y., K. Kikuchi, and S. Suzuki, Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. Chemistry Letters, 1985. 14(11): p. 1695-1698.
    8. Hori, Y., et al., Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochimica Acta, 1994. 39(11-12): p. 1833-1839.
    9. Kim, J., et al., Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. Journal of the American Chemical Society, 2019. 141(17): p. 6986-6994.
    10. Morimoto, M., et al., Visualization of catalytic edge reactivity in electrochemical CO2 reduction on porous Zn electrode. Electrochimica Acta, 2018. 290: p. 255-261.
    11. Chen, Y., C.W. Li, and M.W. Kanan, Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. Journal of the American Chemical Society, 2012. 134(49): p. 19969-19972.
    12. Wang, P., et al., Synergized Cu/Pb Core/Shell Electrocatalyst for High-Efficiency CO2 Reduction to C2+ Liquids. ACS nano, 2020.
    13. Dong, H., et al., Facet design promotes electroreduction of carbon dioxide to carbon monoxide on palladium nanocrystals. Chemical Engineering Science, 2019. 194: p. 29-35.
    14. Zhou, J.-H. and Y.-W. Zhang, Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. Reaction Chemistry & Engineering, 2018. 3(5): p. 591-625.
    15. Xie, H., et al., Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today, 2018. 21: p. 41-54.
    16. Zhang, B. and J. Zhang, Rational design of Cu-based electrocatalysts for electrochemical reduction of carbon dioxide. Journal of Energy Chemistry, 2017. 26(6): p. 1050-1066.
    17. Lv, X., et al., Electron‐Deficient Cu Sites on Cu3Ag1 Catalyst Promoting CO2 Electroreduction to Alcohols. Advanced Energy Materials, 2020. 10(37): p. 2001987.
    18. Hoang, T.T., et al., Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. Journal of the American Chemical Society, 2018. 140(17): p. 5791-5797.
    19. Jo, A., et al., Enhanced electrochemical conversion of CO2 to CO at bimetallic Ag-Zn catalysts formed on polypyrrole-coated electrode. Journal of Catalysis, 2021. 393: p. 92-99.
    20. Wen, G., et al., Orbital Interactions in Bi‐Sn Bimetallic Electrocatalysts for Highly Selective Electrochemical CO2 Reduction toward Formate Production. Advanced Energy Materials, 2018. 8(31): p. 1802427.
    21. Lin, R., et al., PdAg bimetallic electrocatalyst for highly selective reduction of CO2 with low COOH* formation energy and facile CO desorption. Nano Research, 2019. 12(11): p. 2866-2871.
    22. Morimoto, M., et al., Electrodeposited Cu-Sn alloy for electrochemical CO2 reduction to CO/HCOO−. Electrocatalysis, 2018. 9(3): p. 323-332.
    23. Morimoto, M., et al., Experimental and Theoretical Elucidation of Electrochemical CO2 Reduction on an Electrodeposited Cu3Sn Alloy. The Journal of Physical Chemistry C, 2019. 123(5): p. 3004-3010.
    24. Zhang, S.N., et al., A Rational Design of Cu2O−SnO2 Core‐Shell Catalyst for Highly Selective CO2‐to‐CO Conversion. ChemCatChem, 2019. 11(16): p. 4147-4153.
    25. Shen, S., et al., AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small, 2019. 15(37): p. 1902229.
    26. Ren, D., B.S.-H. Ang, and B.S. Yeo, Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catalysis, 2016. 6(12): p. 8239-8247.
    27. Mun, Y., et al., Cu-Pd alloy nanoparticles as highly selective catalysts for efficient electrochemical reduction of CO2 to CO. Applied Catalysis B: Environmental, 2019. 246: p. 82-88.
    28. Favaro, M., et al., Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proceedings of the National Academy of Sciences, 2017. 114(26): p. 6706-6711.
    29. Xiao, H., et al., Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proceedings of the National Academy of Sciences, 2017. 114(26): p. 6685-6688.
    30. Bai, H., et al., Controllable CO adsorption determines ethylene and methane productions from CO2 electroreduction. Science Bulletin, 2021. 66(1): p. 62-68.
    31. Patra, K.K., et al., Operando Spectroscopic Investigation of a Boron-Doped CuO Catalyst and Its Role in Selective Electrochemical C–C Coupling. ACS Applied Energy Materials, 2020. 3(11): p. 11343-11349.
    32. Shang, L., et al., Selective carbon dioxide electroreduction to ethylene and ethanol by core-shell copper/cuprous oxide. Journal of colloid and interface science, 2019. 552: p. 426-431.
    33. Bai, X., et al., Hybrid Cu0 and Cux+ as Atomic Interfaces Promote High‐Selectivity Conversion of CO2 to C2H5OH at Low Potential. Small, 2020. 16(12): p. 1901981.
    34. GÖS, W., Hole Trapping and the Negative Bias Temperature Instability. 2011.
    35. N.C.H.C., Taiwania 1. 2021; Available from: https://iservice.nchc.org.tw/nchc_service/index.php.
    36. Liu, W.-I. and K.-W. Wang, The electrochemical CO2 reduction performance of Cu-Au nanoparticles with core/shell structures. 2020, National Central University.
    37. Kuhl, K.P., et al., Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. Journal of the American Chemical Society, 2014. 136(40): p. 14107-14113.
    38. N.I.S.T., NIST-JANAF Thermochemical Tables. 1998; Available from: https://janaf.nist.gov/.
    39. Ting, L.R.L., et al., Enhancing CO2 Electroreduction to Ethanol on Copper–Silver Composites by Opening an Alternative Catalytic Pathway. ACS Catalysis, 2020. 10(7): p. 4059-4069.
    40. Yang, W.-E. and K.-W. Wang, The Electrochemical CO2 Reduction Performance of Carbon-Supported Cu-Based Nanocatalysts. 2020, National Central University.
    41. Rößner, L. and M. Armbrüster, Electrochemical energy conversion on intermetallic compounds: a review. ACS Catalysis, 2019. 9(3): p. 2018-2062.
    42. Liu, F., C. Wu, and S. Yang, Strain and ligand effects on CO2 reduction reactions over Cu–metal heterostructure catalysts. The Journal of Physical Chemistry C, 2017. 121(40): p. 22139-22146.
    43. Feaster, J.T., et al., Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. Acs Catalysis, 2017. 7(7): p. 4822-4827.
    44. Tian, Z., C. Priest, and L. Chen, Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Advanced Theory and Simulations, 2018. 1(5): p. 1800004.
    45. Zhao, Q. and E.A. Carter, Revisiting competing paths in electrochemical CO2 reduction on copper via embedded correlated wavefunction theory. Journal of Chemical Theory and Computation, 2020. 16(10): p. 6528-6538.
    46. Zhang, X.-G., et al., Electroreduction Reaction Mechanism of Carbon Dioxide to C2 Products via Cu/Au Bimetallic Catalysis: A Theoretical Prediction. The Journal of Physical Chemistry Letters, 2020. 11(16): p. 6593-6599.
    47. Rendon-Calle, A., S. Builes, and F. Calle-Vallejo, A brief review of the computational modeling of CO2 electroreduction on Cu electrodes. Current Opinion in Electrochemistry, 2018. 9: p. 158-165.
    48. Li, J., et al., Cu supported on polymeric carbon nitride for selective CO2 reduction into CH4: a combined kinetics and thermodynamics investigation. Journal of Materials Chemistry A, 2019. 7(28): p. 17014-17021.
    49. Garza, A.J., A.T. Bell, and M. Head-Gordon, Mechanism of CO2 reduction at copper surfaces: pathways to C2 products. ACS Catalysis, 2018. 8(2): p. 1490-1499.
    50. Tomboc, G.M., et al., Potential Link between Cu Surface and Selective CO2 Electroreduction: Perspective on Future Electrocatalyst Designs. Advanced Materials, 2020. 32(17): p. 1908398.
    51. Yan, X., et al., Efficient Electroreduction of CO2 to C2+ Products on CeO2 modified CuO. Chemical Science, 2021.
    52. Ni, W., et al., Efficient electrocatalytic reduction of CO2 on CuxO decorated graphene oxides: an insight into the role of multivalent Cu in selectivity and durability. Applied Catalysis B: Environmental, 2019. 259: p. 118044.
    53. Wang, M., et al., Selective electroreduction of CO2 to CO over co-electrodeposited dendritic core-shell indium-doped Cu@Cu2O catalyst. Journal of CO2 Utilization, 2020. 37: p. 204-212.
    54. Eilert, A., et al., Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. The Journal of Physical Chemistry Letters, 2017. 8(1): p. 285-290.

    下載圖示
    QR CODE