研究生: |
葉昭松 Jhao-song Ye |
---|---|
論文名稱: |
中國保山地區晚古生代腕足動物化石穩定碳氧同位素成分及其古環境意義 Late Paleozoic Environment Indicated by Stable Isotope Records of Brachiopod Shells from Baoshan Block, China |
指導教授: |
米泓生
Mii, Horng-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 中國 、雲南 、晚古生代 、腕足動物 、穩定同位素 |
英文關鍵詞: | China, Yunnan, late Paleozoic, brachiopod, stable isotope |
論文種類: | 學術論文 |
相關次數: | 點閱:392 下載:46 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中國大陸雲南省保山地塊在晚古生代時位於南半球溫帶地區,本研究採集此地區晚古生代地層中的腕足動物化石,期藉由分析保存良好的腕足化石殼體碳氧同位素成分以重建此地區的古海洋環境。本研究共分析27個早石炭紀及43個二疊紀腕足標本,將所有標本灌膠固定後,自喙部往前端依最長殼長方向切開製成薄片,以透射光及陰極射線顯微鏡分別觀察腕足殼體微細構造及發光分佈情形;另外也挑選7個早石炭紀的腕足標本以電子微探針分析殼體的元素含量(包括Si、Al、Fe、Mn、Na、S、Sr、Mg、Ca等)以進一步確認標本保存狀態。
我們根據陰極射線下不發光且殼體Si、Al、Fe、Mn等元素含量低於偵測極限(0.3 mmol/mol Ca)的標準辨別出未受成岩作用影響而保存良好的早石炭紀腕足殼體,其Na、S、Sr、Mg的含量則分別為0.1~10.8、0.2~15.0、0.1~1.9、0.6~8.2 mmol/mol Ca(N=17),與前人分析古生代或現生腕足的殼體數值範圍大致相符。保存良好的早石炭紀Tournaisian腕足殼體δ18O及δ13C平均值分別為-1.8 ± 0.7‰、3.3 ± 0.4‰(1σ,N = 35);而Visean的δ18O及δ13C平均值則分別為-1.8 ± 1.1‰、2.7 ± 0.6‰(1σ,N = 12)。由於早石炭紀地球應處於兩極無大規模冰川發育的環境,故假設全球海水氧同位素數值約-1.0‰,配合保山地區氧同位素記錄換算南緯30度附近冬季海水溫度約為15~17℃左右;與前人研究赤道地區δ18O紀錄比較也呈現約2~8℃的溫差,反映出保山地區於晚古生代位於南半球較高緯度的低溫特性。
保山地區二疊紀的腕足化石殼體則普遍保存較不理想,故僅討論較不受成岩作用影響的碳同位素紀錄,早二疊紀Sakmarine的δ13C平均值為3.5 ± 0.4‰(1σ,N = 6);二疊紀中期Wordian為4.9 ± 0.7‰(1σ,N = 18)。保山地區晚古生代腕足殼體的碳同位素數值範圍與其他地區的數值大致符合,且有相似的變化趨勢。同時保山地區早二疊紀腕足δ13C值較早石炭紀Visean時期重約1‰,亦可反映出如前人推測之石炭紀中期全球有機碳大量埋藏的事件。
This study constructed the Late Paleozoic environment of southern mid latitude by analyzing the stable isotope compositions of brachiopod shells. We collected 27 Early Carboniferous samples and 43 Permian samples from Baoshan Block, Yunnan, China. All samples were cut, thin-sectioned, and examined under plain light and cathodoluminescence for shell preservation. In addition, 7 Early Carboniferous samples were selected to measure the element contents for further evaluation of shell preservation.
Only 13 out of 70 samples were determined well preserved. None of the Permian samples were well preserved to provide Permian δ18O records. However, because the carbon isotope of carbonate was more resistant to diagenesis, the Permian δ13C records still indicated environmental condition. Mean δ13C values of well preserved brachiopod shells are 3.3 ± 0.4‰ (1σ, N = 35), 2.7 ± 0.6‰ (N = 12), 3.5 ± 0.4‰ (N = 6), and 4.9 ± 0.7‰ (N = 18) for Tournaisian, Visean, Sakmarine, and Wordian, respectively. The overall δ13C values of Permian are roughly 1‰ greater than those of Early Carboniferous. Enrichment in δ13C values may correspond to the increased burial rate of organic matter as proposed by previous studies.
Discussions of δ18O records are limited to Early Carboniferous only. The δ18O values of well preserved samples are respectively -1.8 ± 0.7‰ (1σ, N = 35) and -1.8 ± 1.1‰ (N = 12) for Tournaisian and Visean. Compared to δ18O values of tropic regions, the latitudinal temperature difference was about 3~9℃ for Tournaisian and 3~5℃ for Visean. These latitudinal temperature differences were smaller than that of present. Therefore, the Tournaisian and Visean were most likely under an environment without or with little glaciers. Assuming the δ18O of Early Carboniferous seawater was -1.0‰, the winter sea water temperature were 17℃ for Tournaisian and 15℃ for Visean near 30∘S.
王鈺、金玉玕、方大衛,1966,腕足動物化石:科學出版社,共702頁。
王寶貫,2002,怎樣從甲骨文導出商代氣候:科學發展月刊,360期,70-75頁。
何心一、徐桂榮,1990,古生物學教程:地質出版社,北京,共440頁。
林堯明、田化鑫、倫志強、宋可余、朱玉瑛,1990,雲南區域地質誌:中華人民共和國地質礦產部,地質專報,一、區域地質,第21號,地質出版社,北京,共727頁。
陳兼善,1963,普通動物學:國立編譯館,台北,上、下冊,共1102頁。
陳敘琬,2001,從早石碳紀腕足動物化石之氧同位素記錄看中國華南地區古溫度特性:國立台灣師範大學碩士論文,共91頁。
戴永定、吳浩若、傅瑜、張維、王家珍、楊萬容、馮儒林、杜乃正,1995,生物礦物學:石油工業出版社,北京,共572頁。
Anderson, P. M., Barnosky, C. W., Bartlein, P. J., Behling, P. J., Brubaker, L., Cushing, E. J., Dodson, J., Dworetsky, B., Guetter, P. J., Harrison, S. P., Huntley, B., Kutzbach, J. E., Markgraf, V., Marvel, R., McGlone, M. S., Mix, A., Moar, N. T., Morley, J., Perrott, R. A., Peterson, G. M., Prell, W. L., Prentice, I. C., Ritchie, J. C., Roberts, N., Ruddiman, W. F., Salinger, M. J., Spaulding, W. G., Street-Perrott, F. A., Thompson, R. S., Wang, P. K., Webb, T., III, Winkler, M. G., and Wright, H. E., Jr., 1988, Climatic changes of the last 18,000 years; observations and model simulations: Science, v. 241, p. 1043-1052.
Anderson, T. F., and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. Sl., eds, Stable isotopes in sedimentary geology: SEPM short Course, no. 10, p. 1-151.
Anderson, T. F. and Schneidermann, N., 1973, Stable isotope relationships in pelagic limestones from the Central Caribbean, Leg 15, Deep Sea Drilling Project, in Edgar, N. T., Saunders, J. B., Bolli, H. M., Boyce, R. E., Broecker, W. S., Donnelly, T. W., Gieskes, J. M., Hay, W. W., Horowitz, R. M., Maurrasse, F., Perez Nieto, H., Prell, W., Premoli Silva, I., Riedel, W. R., Schneidermann, N., Waterman, L. S., Kaneps, A. G., and Herring, J. R., eds, Initial reports of the Deep Sea Drilling Project, covering Leg 15 of the cruises of the drilling vessel Glomar Challenger, San Juan, Puerto Rico to Cristobal, Panama; December 1970-February 1971 :Initial Reports of the Deep Sea Drilling Project, no. 15, p. 795-803.
Attendorn, H. G., and Bowen, R. N. C., 1997, Radioactive and Stable Isotope Geology: Chapman & Hall, London, 522p.
Banner, J. L., Hanson, G. N., and Meyers, W. J., 1988, Water-rock interaction history of regionally extensive dolomites of Burlington-Keokuk Formation (Mississippian): Isotopic evidence, in Shukla, V., and Baker, P. A., eds., Sedimentology and geochemistry of dolostones: Society of Economic Paleontologists and Mineralogists Special Publication 43, p. 97-113.
Banner, J. L., and Kaufman, J., 1994, The isotopic record of ocean chemistry and diagenesis preserved in non-luminescent brachiopods from Mississippian carbonate rocks, Illinois and Missouri: Geological Society of America Bulletin, v. 106, p. 1074-1082.
Barbin, V., and Gaspard, D., 1995, Cathodoluminescenece of recent articulate brachiopod shells – Implications for growth stages and diagenesis evalution: GEOBIOS, M.S., v. 18, p .39-45.
Beauchamp, B., Oldershaw, A. E., and Krouse, H. R., 1987, Upper Caboniferous to upper Permian 13C-enriched primary carbonates in the Sverdrup Basin, Canadian Arctic: Comparisons to Coeval western North American Ocean margins: Chemical Geology (Isotope Geoscience Section), v. 65, p. 391-413.
Beerling, D. J., Lake, J. A., Berner, R. A., Hickey, L. J., Taylor, D. W., and Royer, D. L., 2002, Carbon isotope evidence implying high O2/CO2 ratios in the Permo-Carboniferous atmosphere: Geochimica Acta, v. 66, no. 21, p. 3757-3767.
Berner, R. A., 1991, A model for atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 291, no. 4, p. 339-376.
Berner, R. A., 1994, GEOCARB II; a revised model of atmospheric CO2 over Phanerozoic time: American Journal of Science, v. 294, no. 1, p. 56-91
Berner, R. A., 1997, The rise of plants and their effect on weathering and atmospheric CO2: Science, v. 276, no. 5312, p. 544-546.
Bickert, T., Paetzold, J., Samtleben, C., and Munnecke, A., 1997, Paleoenvironmental changes in the Silurian indicated by stable isotopes in brachiopod shells from Gotland, Sweden: Geochimica et Cosmochimica Acta, v. 61, no. 13, p. 2717-2730.
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B., and Raynaud, D., 1995, Variations in atmospheric methane concentration during the Holocene Epoch: Nature, v. 374, no. 6517, p. 46-49.
Brand, U., 1989, Global climate changes during the Devonian-Mississippian: Stable isotope biogeochemistry of brachiopods: Palaeogeography, Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), v. 75, p. 311-329.
Brand, U., Logan, A., Hiller, N., and Richardson, J., 2003, Geochemistry of modern brachiopods: applications and implications for oceanography and paleoceanography: Chemical Geology, v. 198, p. 305-334.
Bruckschen, P., Oesmann, S., and Veizer, J., 1999, Isotope stratigraphy of the European Carboniferous: proxy signals for ocean chemistry, climate and tectonics: Chemical Geology, v. 161, p. 127-163.
Bruckschen, P., and Veizer, J., 1997, Oxygen and carbon isotopic composition of Dinantian brachiopods: Paleoenvironmental implications for the Lower Carboniferous of western Europe: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 132, p. 243-264.
Caputo, M. V., and Crowell, J. C., 1985, Migration of glacial centers across Gondwana during Paleozoic Era: Geological Society of America Bulletin, v. 96, no. 8, p. 1020-1036.
Carpenter, S. J., and Lohmann, K. C., 1995, δ18O and δ13C values of modern brachiopod shells: Geochimica et Cosmochimica Acta, v. 59, no. 18, p. 3749-3764.
Clemmensen, L. B., Kent, D. V., Jenkins J., and Farish A., 1998, A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 140, no. 1-4, p. 135-159.
Compston, W., 1960, The carbon isotopic composition of certain marine invertebrates and coals from the Australian Permian: Geochimica et Cosmochimica Acta, v. 18, p. 1-22.
Coplen, T. B., and Schlanger, S. O., 1973, Oxygen and carbon isotope studies of carbonate sediments from Site 167, Magellan Rise, Leg 17: Initial Reports of the Deep Sea Drilling Project, no. 17, p. 505-509.
Craig, H., and Gordon, L. I., 1965, Isotopic oceanography; deuterium and oxygen 18 variations in the ocean and the marine atmosphere, in Symposium on marine geochemistry, 1964, Occasional Publication - Narragansett Marine Laboratory, University of Rhode Island, p. 277-374.
Crowell, J. C., 1978, Gondwanan glaciation, cyclothems, continental positioning, and climate change: American Journal of Science, v. 278, no. 10, p. 1345-1372.
Crowley, T. J., 1994, Pangean climates, in Klein, G. D., ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a super continent: Geological Society of America Specil Paper 288, p. 25-39.
Crowley, T. J., and Baum, S. K., 1994, General circulation model study of late Carboniferous interglacial climates: Palaeoclimates, v. 1, p. 3-21.
Dansgaard, W., 1964, Stable isotopes in precipitation: Tellus, v. 16, p. 436-468.
deMenocal, P. B., 1995, Plio-Pleistocene African climate: Science, v. 270, no. 5233, p. 53-59.
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., and Hamidullah, S., 2001, Seasonal stable isotope evidence for a striong Asian monsoon throughout the past 10.7 m.y.: Geology, v. 29, no. 1, p. 31-34.
Dickins, J. M., 1996, Problems of a Late Palaeozoic glaciation in Australia and subsequent climate in the Permian: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 125, p. 185-197
Elderfield, H., Gieskes, J. M., Baker, P. A., Oldfield, R. K., Hawkesworth, C. J., and Miller, R., 1982, 87Sr/88Sr and 18O/16O ratios, interstitial water chemistry and diagenesis in deep-sea carbonate sediments of the Ontong Java Plateau: Geochimica et Cosmochimica Acta, v. 46, no. 11, p. 2259-2268.
Epstein, S., Buchsbaum, R., Lowenstam. H. A., and Urey, H. C., 1953, Revised carbonate-water isotopic temperature scale: Geological Society of America Bulletin, v. 64, p. 1315-1325.
Eyles, N., Mory, A. J., and Backhouse, J., 2002, Carboniferous-Permian palynostratigraphy of west Australian marine rift basins: resolving tectonic and eustatic controls during Gondwanan glaciations: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 184, p. 305-319.
Fairbanks, R. G., 1989, A 17,000-year glacio-eustatic sea level record; influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation: Nature, v. 342, no. 6250, p.637-642.
Fairbanks, R. G., and Matthews, R. K., 1978, The marine oxygen isotope record in Pleistocene coral, Barbados, West Indies: Quaternary Research, v. 10, no. 2, p. 181-196.
Folk, R. L., 1968, Petrology of sedimentary rocks: Austin, Tex.: Hemphill Pub. Co., 170p.
Frakes, J. A., Francis, J. E., and Skytus, J. I., 1992, Climate Modes of the Phanerozoic: The History of Earth’s Climate Over the Past 600 Million Years, Cambridge Univ. Press, Cambridge
Frank, T. D., and Lohmann, K. C., 1996, Diagenesis of fibrous magnesian calcite marine cement: Implications for the interpretation of δ18O and δ13C values of ancient equivalents: Geochimica et Cosmochimica Acta, v. 60, no. 13, p. 2427-2436.
Friedli, H., Loetscher, H., Oeschger, H., Siegenthaler, U., and Stauffer, B., 1986, Ice core record of the 13C/ 12C ratio of atmospheric CO2 in the past two centuries: Nature, v. 324, p. 237-238.
Gagan, M. K., and Chivas, A. R., 1995, Oxygen isotopes in Western Australian coral reveal Pinatubo aerosol-induced cooling in the western Pacific warm pool: Geophysical Research Letters, v. 22, no. 9, p. 1069-1072.
Garzanti, E., and Sciunnach, D., 1997, Early Carboniferous onset of Gondwanian glaciation and neo-Tethyan rifting in South Tibet : Earth and Planetary Science Letters, v. 148, no. 1-2, p. 359-365.
Gill, I., Olson, J. J., and Hubbard, D. K., 1995, Corals, paleotemperature records, and the aragonite-calcite transformation: Geology, v. 23, no. 4, p. 333-336.
Given, R. K., and Lohmann, K. C., 1985, Spatial and temporal controls on the variation of original isotopic compositions of Permian marine carbonates: Journal of Sedimentary Petrology, v. 55, p . 430-439.
Gonzalez, C. R., 1990, Development of the late Paleozoic glaciations of the South American Gondwana in western Argentina: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 79, no. 3-4, p. 275-287.
Graber, E. R., 1989, Sedimentology, diagenesis, and secular δ13C variations in the upper Horquilla limestone (Pennsylvanian/Permian) of New Mexico [Ph.D. thesis]: Ann Arbor, University of Michigan, 276p.
Graybeal, A. L., and Heath, G. R., 1984, Remobilization of transition metals in surfacial pelagic sediments from the eastern Pacific: Geochimica et Cosmochimica Acta, v. 48, p. 965-975.
Grossman, E. L., 1994, The carbon and oxygen isotopic record during the evolution of Pangea: Carboniferous to Triassic, in Klein, G, D,. ed., Pangea: Paleoclimate, tectonics, and sedimentation during accretion, Zenith, and breakup of a supercontinent: Geological Society of America Special Paper 288, p. 207-228.
Grossman, E. L., and Ku, T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite; temperature effects: Chemical Geology; Isotope Geoscience Section, v. 59, no. 1, p. 59-74.
Grossman, E. L., Mii, H. S., and Yancey, T. E., 1993, Stable isotopes in Late Pennsylvanian brachiopods from the United States; implications for Carboniferous paleoceanography: Geological Society of America Bulletin, v. 105, no. 10, p. 1284-1296.
Grossman, E. L., Mii, H. S., Zhang, C. l., and Yancey, T. E., 1996, Chemical variation in Pennsylvanian brachiopod shells; diagenetic, taxonomic, microstructural, and seasonal effects: Journal of Sedimentary Research, v. 66, no. 5, p. 1011-1022.
Gruszczynski, M., Halas, S., Hoffman, A., and Malkowski, K., 1989, A brachiopod calcite record of the oceanic carbon and oxygen isotope shifts at the Permian/Triassic transition: Nature, v. 337, p. 64-68.
Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L., 1994, Tropical temperature variations since 20,000 years ago; modulating interhemispheric climate change: Science, v. 263, no. 5147, p. 663-665.
Guiot, J., and Couteaux, M., 1992, climate reconstruction from pollen data in the Grand Duchy of Luxembourg since 15 000 yr BP: Journal of Quaternary Science, v. 7, no. 4, p. 303-309.
Hays, P. D., and Grossman, E. L., 1991, Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate: Geology, v. 19, no. 5, p.441-444.
Hoefs, J., 1997, Stable isotope geochemistry: 4th ed.: Springer-Verlag Berlin Heidelberg: New York, 201p.
Huang, K. N., and Opdyke, N. D., 1991, Paleomagnetic results from the Upper Carboniferous of the Ahan Thai-Mala block of western Yunnan, China: Tectonophysics, v. 192, p. 333-344.
Hudson, J. D., and Anderson, T. F., 1989, Ocean temperatures and isotopic compositions through time, in Clarkson, E. N. K., Curry, G. B., Rolfe, W. D. I., eds., Environments and physiology of fossil organisms: Univ. Leicester, Dep. Geol., p. 183-192.
IPCC (Intergovernmental Panel on Climate Change), 2001, Third assessment report: Climate change 2001: http://www.ipcc.ch.
IUGS (International Union of Geological Sciences), 2004, International stratigraphic chart: http://www.iugs.org/.
IUPAC (the International Union of Pure and Applied Chemistry), 2004, Periodic Table of the Elements: http://www.iupac.org/reports/periodic_table/.
Jacoby, G. C., 1994, Temperature change and forest response based on tree-ring and ecological evidence in the boreal forests: Eos, Transactions, American Geophysical Union, v. 75, no.44, p. 52.
James, N. P., Bone, Y., and Kyser, T. K., 1997, Brachiopod δ18O values do reflect ambient oceanography: Lacepede Shelf, southern Australia: Geology, v. 25, no. 6, p. 551-554.
Jiménez de Cisneros, C., Caballero, E., Vera, J.A., Durán, J.J., and Juliá, R., 2003, A record of Pleistocene climate from a stalactite, Nerja Cave, southern Spain: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 189, p. 1-10.
Jones, G. A., and Keigwin, L. D., 1988, Evidence from Fram Strait 78 oN for early deglaciation: Nature, v. 336, no. 6194, p. 56-59.
Keith, M. L., and Weber, J. N., 1964, Carbon and oxygen isotopic composition of selected limestones and fossils: Geochemica et Cosmochimica Acta, v. 28, p. 1787-1816.
Klein, R. T., Lohmann, K. C., and Thayer, C. W., 1996, Bivalve skeletons record sea-surface temperature and delta 18O via Mg/Ca and 18O/16O ratios: Geology, v. 24, no. 5, p. 415-418.
Korte, C., Kozur, H. W., and Spoetl, C., 2002, Carbon isotope stratigraphy at the Permian-Triassic boundary: Schriftenreihe der Deutschen Geologischen Gesellschaft, v. 17, p. 112-113.
Kurths, J., Spiering, C., Mueller-Stoll, W., and Striegler, U., 1993, Search for solar periodicities in Miocene tree ring widths: Terra Nova, v. 5, no. 4, p. 359-363.
Lee, X. Q., and Wang, G. J., 2000, No vital effect on δ18O and δ13C values of fossil brachiopod shells, Middle Devonian of China: Geochimica et Cosmochimica Acta, v. 15, p. 2649-2664.
Leventer, A., Williams, D. F., and Kennett, J. P., 1982, Dynamics of the Laurentide ice sheet during the last deglaciation; evidence from the Gulf of Mexico: Earth and Planetary Science Letters, v. 59, no. 1, p. 11-17.
Li, B.H., Jian, Z.M., and Wang, P.X., 1997, Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa Trough during the last 20,000 years: Marine Micropaleontology, v. 32, p. 59-69.
Lorius, C., Merlivat, L., Jouzel, J., and Pourchet, M., 1979, A 30,000-yr isotope climatic record from Antarctic ice: Nature, v. 280, p. 644-648.
Lowenstam, H. A., 1961, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of recent and fossil brachiopods and their bearing on the history of the oceans: Journal of Geology, v. 69, no. 3, p. 241-260.
Machel, H. G., 1985, Cathodoluminescence in calcite and dolomite and its chemical interpretation: Geoscience Canada, v. 12, no. 4, p. 139-147.
Matter, A., Douglas, R. G., and Perch-Nielsen, K., 1975, Fossil preservation, geochemistry, and diagenesis of pelagic carbonates from Shatsky Rise, Northwest Pacific: Initial Reports of the Deep Sea Drilling Project, v. 32, p. 891-921.
Meyers, W. J., 1974, Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico: Journal of Sedimentary Petrology, v. 44, p. 837-861.
Meyers, W. J., and Lohmann, K. C., 1985, Isotope geochemistry of regionally extensive calcite cement zones and marine components in Mississippian limestones, New Mexico, in Schneidermann, N., and Harris, P. M., eds. Carbonate cement: Society of Economic Paleontologists and Mineralogists Special Publication 36, p. 223-239.
Mii, H. S., and Grossman, E. L., 1994, Late Pennsylvanian seasonality reflected in the 18O and elemental composition of a brachiopod shell: Geology, v. 22, no. 7, p. 661-664.
Mii, H. S., Grossman, E. L., and Yancey, T. E., 1997, Stable carbon and oxygen isotope shifts in Permian seas of West Spitsbergen; global change or diagenetic artifact?: Geology, v. 25, no. 3, p. 227-230.
Mii, H. S., Grossman, E. L., and Yancey, T. E., 1999, Carboniferous isotope stratigraphies of North America: Implications for Carboniferous paleoceanography and Mississippian glaciation: Geological Society of America Bulletin, v. 111, no. 7, p. 960-973.
Mii, H. S., Grossman, E. L., Yancey, T. E., Chuvashov, B., Egorov, A., and Yegorov, A., 2001, Isotopic records of brachiopod shells from the Russian Platform; evidence for the onset of Mid-Carboniferous glaciation: Chemical Geology, v. 175, no. 1-2, p. 133-147.
Moore, R. C., 1965, Treatise on invertebrate paleontology [H] Brachiopoda: Geological Society of America, New York, 927p.
Muehlenbachs, K., 1986, Alteration of the oceanic crust and the 18O history of seawater, in Valley, John W., Taylor, Hugh P., Jr., and O'Neil, James R., eds., Stable isotopes in high temperature geological processes, Reviews in Mineralogy, v. 16, p. 425-444.
Muehlenbachs, K., and Clayton, R. N., 1976, Oxygen isotopes composition of the oceanic crust and its bearing on seawater: Journal of Geophysical Research, v. 81, p. 4365-4369.
Nesbitt, H. W., and Young, G. M., 1982, Early Proterozoic climates and plate motions inferred from major element chemistry of lutites: Nature, v. 299, p. 715-717.
NOAA (National Oceanic and Atmospheric Administration), 2004, NOAA Optimum Interpolation Sea Surface Temperature Analysis: http://www.emc.ncep.noaa.gov/research/cmb/sst_analysis/
Oglesby, R. J., and Saltzman, B., 1990, Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide: Geophysical Research Letters, v. 17, no. 8, p. 1089-1092.
O'Neil, J. R., Clayton, R. N., and Mayeda, T. K., 1969, Oxygen isotope fractionation in divalent metal carbonates: The Journal of Chemical Physics, v. 51, no. 12, p. 5547-5558.
Owen, R., Kennedy, H., and Richardson, C., 2001, Experimental investigation into partitioning of stable isotopes between scallop (Pecten maximus) shell calcite and sea water: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 185, p. 163-174.
Pierson, B. J., 1981, The control of cathodoluminescence in dolomite by iron and manganese: Sedimentology, v. 28, p. 601-610.
Popp, B. N., Anderson, T. F., and Sandberg, P. A., 1986, Brachiopods as indicators of original isotopic compositions in some Paleozoic limestones: Geological Society of America Bulletin, v. 97, no. 10, p. 1262-1269.
Powell, D., and Saxena, M., 1971, Tillite horizons in the Chamba Himalayas of Himachal Pradesh, North India: Journal of the Geological Society of London, v. 127, no. 6, p. 595-598.
Railsback, L. B., Anderson, T. F., Ackerly, S. C., and Cisne, J. L., 1989, Paleoceanographic modeling of temperature-salinity profiles from stable isotopic data: Paleoceanography, v. 4, no. 5, p. 585-591.
Rao, C. P., 1988, Oxygen and carbon isotope composition of cold-water Berriedale Limestone (Lower Permian), Tasmania, Australia: Sedimentary Geology, v. 60, no. 1-4, p. 221-231.
Rao, C. P., and Green, D. C., 1982, Oxygen and carbon isotopes of Early Permian cold-water carbonates, Tasmania, Australia: Journal of Sedimentary Petrology, v. 52, no. 4, p. 1111-1125.
Ross, D. A., 1995, Introduction to oceanography: HarperCollins College Publishers, New York, 496p.
Rush, P. F., and Chafetz, H. S., 1990, Fabric-retentive, non-luminescent brachiopods as indicators of original δ13C andδ18O composition: a test: Journal of Sedimentary Petrology, v. 60, no. 6, p. 968-981.
Saltzman, M. R., 2002, Carbon and Oxygen isotope stratigraphy of the Lower Mississippian (Kinderhookian-lower Osagean), western United States: Implications for seawater chemistry and glaciation: GSA Bulletin, v. 114, no. 1, p. 96-108.
Samtleben, C., Paetzold, J., Bickert, T., and Munecke, A., 1995, Stable isotopes in brachiopod shells from the Silurian of Gotland (Sweden); indicators of paleoenvironmental change: Terra Nostra, v. 1-95, p. 79.
Savin, S. M., 1977, The history of the Earth’s surface temperature during the past 100 million years: Annual Review of Earth and Planetary Sciences, v. 5, p. 319-355.
Scholle, P. A., Stemmerik, L., and Ulmer, D. S., 1991, Diagenetic history and hydrocarbon potential of Upper Permian carbonate buildups, Wegener Halvo Area, Jameson Land Basin, East Greenland: American Association of Petroleum Geologists Bulletin, v. 75, p. 701-725.
Schrag, D. P., Hampt, G., and Murray, D. W., 1996, Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean: Science, v. 272, no. 5270, p. 1930-1932.
Scotese, C. R., 2000, PALEOMAP Project website, Paleozoic animation, http://www.scotese.com/pzanim.htm.
Scotese, C. R., Boucot, A.J., and McKerrow, W. S., 1999, Gondwana palaeogeography and palaeoclimatology: Journal of African Earth Scince, v. 28, no. 1, p. 99-114.
Shackleton, N. J., 1977, The oxygen isotope stratigraphic record of the late Pleistocene: Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, v. 280, no. 972, p.169-182.
Shackleton, N. J., and Opdyke, N. D., 1973, Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 and 106 Year Scale: Quaternary Research, v. 3, no. 1, p. 39-55.
Spero, H. J., Bijma, J., Lea, D. W., and Bemis, B. E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, v. 390, p. 497-500.
Stanley, S. M., 1998, Earth system history: W.H. Freeman, New York, 615p.
Steig, E. J., Grootes, P. M., and Stuiver, M., 1994, Seasonal precipitation timing and ice core records: Science, v. 266, p. 1885-1886.
Urey, H. C., Lowenstam, H. A., Epstein, S., and McKinney, C. R., 1951, Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and southeast United States: Geological Society of America Bulletin, v. 62, p. 399-416.
Veevers, J. J., and Powell, M., 1987, Late Paleozoic glacial episodes in Gondwanaland reflected in transgressive-regressive depositional sequences in Euramerica, Geological Society of America Bulletin, v. 98, no. 4, p. 475-487.
Veizer, J., 1983, Chemical diagenesis of carbonates: Theory and application of trace element technique, in Arthur, M. A., and others, eds., Stable isotopes in sedimentary geology: Society of Economic Paleontologists and Mineralogists Short Course No. 10, p. 3-1-3-100.
Veizer, J., Holser, W. T., and Wilgus, C. K., 1980, Correlation of 13C/12C and 34S/32S secular variations: Geochimica et Cosmochimica Acta, v. 44, p. 579-587.
Wang, X. L., Kato, M., and Wang H. Z., 1996, On the tectonic position of the Baoshan region during the Late Palaeozoic: Journal of Southest Asian Earth Science, v. 13, no. 3-5, p. 171-183.
Wang, X. D., Shen, S. Z., Sugiyama, T., and West, R. R., 2003, Late Palaeozoic of Tibet (Xizang) and west Yunnan, southwest China: successions and palaeobiogeography: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 191, p. 385-397.
Wang, X. D., Ueno, K., Mizuno, Y., and Sugiyama, T., 2001, Late Paleozoic faunal, climatic, and geographic changes in the Baoshan block as a Gondwana-derived continental fragment in southest China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 170, p. 197-218.
Williams, A., 1968, Evolution of the shell structure of articulate brachiopods: Palaeontological Association of London Special Papers in Paleontology, no. 2, 55p.
Wopfner, H., 1999, The early Permian deglaciation event between East Africa and northwestern Australia: Journal of African Earth Sciences, v. 29, no. 1, p. 77-90.
Yadav, R. R., and Karpavichus, J., 1993, Tree ring evidences of Little Ice Age from the northern Russian forest borders: Geophytology, v. 23, no. 1, p. 167-170.
Zakharov, Y. D., Ukhaneva, N. G., Ignatyev, A. V., Afanasyeva, T. B., Buryi, G. I., Panasenko, E. S., Popov, A. M., Punina, T. A., and Cherbadzhi, A. K., 2000, Latest Permian and Triassic carbonates of Russia; new palaeontological findings, stable isotopes, Ca-Mg ratio, and correlation: Developments in Palaeontology and Stratigraphy, v. 18, p .141-171.
Ziegler, A. M., Hulver, M. L., and Rowley, D. B., 1997, Permian world topography and climate, in Martini, I. Peter (ed.), Late glacial and postglacial environmental changes; Quaternary, Carboniferous-Permian, and Proterozoic, Oxford University, New York, p. 111-142.