研究生: |
陳厚諭 Chen, Hou-Yu |
---|---|
論文名稱: |
不同咖啡因增補劑量對運動誘發肌肉損傷後之肌力表現與肌肉酸痛的影響 Effects of Different Caffeine Dose on Muscle Strength and Muscle Pain Following Eccentric Exercise-Induced Muscle Damage |
指導教授: |
王鶴森
Wang, Ho-Seng |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 最大自主等長肌力 、肌肉疲勞 、肌電圖 、同化性荷爾蒙 、劑量反應 |
英文關鍵詞: | maximal voluntary isometric contractions, muscle fatigue, electromyography, anabolic hormone, dose-response |
論文種類: | 學術論文 |
相關次數: | 點閱:296 下載:91 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的︰探討離心運動誘發肌肉損傷 (EIMD) 後,增補不同劑量之咖啡因對肌肉力量(MVIC)、疲勞 (Tlim) 及肌肉酸痛 (DOMS) 的效應。方法:招募45位男性大學持拍類運動員,採雙盲、安慰劑控制及獨立樣本之設計,依前測之肘屈肌MVIC將受試者隨機分派至安慰劑組 (15名;年齡:22.33 ± 2.09歲) 、低劑量組 (15名;4 mg/kg;年齡:22.46 ± 3.11歲) 及高劑量組 (15位;8mg/kg;年齡:22.60 ± 2.09歲) 。所有受試者先以60下最大等速 (90°s-1) 肘屈肌離心收縮誘發肌肉損傷,接著在EIMD後24與48小時連續2天進行增補,並在增補前及增補後各進行1次肌力測試 {包含肘屈肌MVIC、最大肌電圖訊號 (EMGmax) 及肘屈肌Tlim},以評估咖啡因對EIMD所引起之肌力流失的效應,同時在肌力測量後並立即進行DOMS指數的收集。另外,在每次肌力測量前、增補後及運動後採血分析血液生化指標 (鉀離子、鈣離子、肌酸激酶、睪固酮、皮質醇) 。統計方法以體重及增補前各依變項數值為共變數,採混合設計2因子共變數分析。結果:所有指標在組別因子及時間因子之交互作用皆未達顯著 (p >.05) 。在組別因子主要效果中,低劑量組之MVIC (0.66 ± 0.20 Nm/kg) 及EMGmax (1207.87 ± 450.98 μV) 皆顯著優於安慰劑組 (MVIC: 0.64 ± 0.15 Nm/kg;EMG: 1051.23 ± 483.48 μV) 與高劑量組 (MVIC: 0.64 ± 0.21 Nm/kg;EMG: 893.76 ± 399.38 μV) ;安慰劑組之DOMS (63.83 ± 18.69 mm) 分別顯著高於高劑量組 (58.33 ± 24.75 mm) 與低劑量組 (43.33 ± 21.10 mm) (p <.05) ;高劑量組之Tlim (95.03 ± 50.42 秒) 顯著高於安慰劑組 (Tlim: 76.43 ± 16.17 秒) (p <.05) ;高劑量組之鉀離子 (3.69 ± 0.60 mmol/L) 及鈣離子 (10.01 ± 0.27 mg/dL) 濃度顯著高於安慰劑組 (鉀離子:4.24 ± 0.65 mmol/L;鈣離子:9.72 ± 0.19 mg/dL) (p <.05);高劑量組增補後及運動後之T/C ratio (0.025 ± 0.010;0.024 ± 0.015) 顯著低於安慰劑組 (0.034 ± 0.003;0.036 ± 0.010) (p <.05)。結論:每公斤體重4與8毫克的咖啡因增補劑量在EIMD期間對肌力表現恢復及DOMS的減緩並無劑量反應的關係存在。同時低劑量咖啡因增補可有效減緩DOMS並提升運動單位的招募,對促進MVIC的效果較具優勢;高劑量咖啡因則對肌耐力表現Tlim的促進較具優勢,可能原因為增補後Ca++的釋放並減緩血液K+濃度而有利於減緩肌肉疲勞有關。
Purpose: The current study aimed to evaluate the dose-response effects of different doses of caffeine supplementation on muscle strength (MVIC), muscle fatigue (Tlim), and DOMS after eccentric exercise-induced muscle damage. Methods: With a double-blinded, placebo-controlled independent sample design, the present study recruited 45 male college racket sport athletes. College athletes were randomly assigned into placebo, low-dose, and high-dose groups. Muscle damage was firstly induced by prior elbow flexor maximal isokinetic eccentric contraction in every subject. Next, consecutive caffeine supplementations were administered in by each subject 24 hr and 48 hr after EIMD. To investigate the effects of caffeine on EIMD-induced muscle power depletion, strength tests {i.e., elbow flexor MVIC, maximal electromyography (EMGmax) , and elbow flexor Tlim} were performed before and after each supplementation, followed by data collection on DOMS index. Results: No significant group by time interaction was observed across all indices (p >.05). Regarding the main effects of group factor, MVIC (0.66 ± 0.20 Nm/kg) and EMGmax (1207.87 ± 450.98 μV) in the low-dose group were superior as compared with the placebo (MVIC: 0.64 ± 0.15 Nm/kg;EMG: 1051.23 ± 483.48 μV) and high-dose groups (MVIC: 0.64 ± 0.21 Nm/kg;EMG: 893.76 ± 399.38 μV). DOMS was significantly higher in the placebo (63.83 ± 18.69 mm) group as compared with the high-dose (58.33 ± 24.75 mm) and low-dose groups (43.33 ± 21.10 mm) (p >.05). Tlim in the high-dose group (95.03 ± 50.42 sec) was significantly higher than that in the placebo group (Tlim: 76.43 ± 16.17 sec) (p <.05). Levels of K+ (3.69 ± 0.60 mmol/L) and Ca++ (10.01 ± 0.27 mg/dL) were significantly higher in the high-dose group as compared with placebo group (K+: 4.24 ± 0.65 mmol/L;Ca++: 9.72 ± 0.19 mg/dL) (p <.05). T/C ratios at the post-supplement and post-exercise time points (0.025 ± 0.010;0.024 ± 0.015) were lower in the high-dose group as compared with the placebo group (0.034 ± 0.003;0.036 ± 0.010) (p <.05). Conclusion: There was no dose-response relation between caffeine dosage (i.e., 4g/kg, 8g/kg), muscle strength recovery, and DOMS attenuation. Low dosage of caffeine supplement can attenuate DOMS and facilitate recruitment of motor units, which may thereby benefit MVIC performance. High dosage of caffeine supplement may promote Tlim performance, an indicator of muscular endurance, possibly via the attenuation of muscle fatigue induced by the release of Ca++ and decreased serum K+ levels.
陳厚諭、王鶴森 (2010)。咖啡因增補對不同體能水準之延遲性肌肉酸痛的影響。大專體育學刊,12 (2),103-111。
陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,1,19-32。
Alkatan, M. F., Dowling, E. A., Branch, J. D., Grieco, C., Kollock, R. O., & Williams, M. H. (2011). Effect of caffeine on maximum strength and rate of force development in male weight lifters. Medicine and Science in Sports and Exercise, 43(suppl 15), 2368.
Astorino, T. A., Martin, B. J., Schachtsiek, L., Wong, K., & Ng, K. (2011). Minimal effect of acute caffeine ingestion on intense resistance training performance. Journal of Strngth and Conditioning Research, 25(6), 1752–1758.
Astorino, T. A., & Roberson, D.W. (2010). Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. Journal of Strength and Conditioning Research, 24(1), 257-265.
Astorino, T. A., Terzi, M. N., Roberson, D. W., & Burnett, T. R. (2011). Effect of caffeine intake on pain perception during high-intensity exercise. International Journal of Sport Nutrition and Exercise Metabolism, 21, 27-32.
Archna, S., & Jaspal, S. S. (2010). Effects of caffeine ingestion on strength and endurance performance of normal young adults. Doping Journal, 7, 2.
Beaven, C. M., Hopkins, W. G., Hansen, K. T., Wood, M. R., Cronin, J. B., & Lowe, T. E. (2008). Dose effect of caffeine on testosterone and cortisol responses to resistance exercise. International Journal of Sport Nutrition and Exercise Metabolism, 18, 131-141.
Bellar, D. M., Judge, L. W., Kamimori, H., & Glickman, E. L. (2012). The effects low dose buccal administered caffeine on RPE and pain during an upper body muscle endurance test and lower body anaerobic test. Journal of Research, 7(1), 24-28.
Boyas, S., & Guevel, A. (2011). Influence of exercise intensity and joint angle on endurance time prediction of sustained submaximal isometric knee extensions. European Journal of Applied Physiology, 111(6), 1187-1196.
Braun, W. A., & Dutto, D. J. (2003). The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. European Journal of Applied Physiology, 90, 29-34.
Burke, L. M. (2008). Caffeine and sports performance. Applied Physiology Nutrition and Metabolism, 33, 1319-1334.
Chatzinikolaou, A., Fatouros, I. G., Gourgoulis, V., Avloniti, A., Jamurtas, A. Z., Nikolaidis, M. G., et al. (2010). Time course of changes in performance and inflammatory responses after acute plyometric exercise. Journal of Strngth and Conditioning Research, 24(5), 1389-1398.
Chen, H. Y., Wang, H. S., Tung, K., & Chao, H. H. (2015). Effects of gender difference and caffeine supplementation on anaerobic muscle performance. International Journal
of Sports Medicine.
Chen, T. C., Chen, H. L., Pearce, A. J., & Nosaka, K. (2012). Attenuation of eccentric exercise-induced muscle damage by preconditioning exercises. Medicine and Science in Sports and Exercise, 44(11), 2090-2098.
Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. Europe Journal Appllied Physiology, 111, 211-223.
Cheung, K., Hume, P., & Maxwell, L. (2003). Delayed onset muscle soreness : Treatment strategies and performance factors. Sports Medicine, 33(2), 145-164.
Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512-520.
Connolly, D. A., Sayers, S. P., & McHugh, M. P. (2003). Treatment and prevention of
delayed onset muscle soreness. Journal of Strength and Conditioning Research, 17(1), 197-208.
Coso, J. D., Salinero, J. J., Gonzalez-Millan, C., Abian-Vicen, J., & Perez-Gonzalez, B. (2012). Dose response effects of a caffeine-containing energy drink on muscle performance: A repeated measures design. Journal of International Society of Sports Nutrition, 9, 21.
Costa, F., Diedrich, A., Johnson, B., Sulur, P., Farley, G., & Biaggioni, I. (2001). Adenosine, a
metabolic trigger of the exercise pressor reflex in humans. Hypertension, 37(3),
917-922.
Davis, J. K., & Green, J. M. (2009). Caffeine and anaerobic performance ergogenic value and mechanisms of action. Sports Medicine, 39(10), 813-832.
Duncan, M. J., Stanley, M., Parkhouse, N., Cook, K., & Smith, M. (2013). Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. European Journal of Sport Science, 13(4), 392-399.
Durand, R. J., Castracane, V. D., Hollander, D. B., Tryniecki, J. L., Bamman, M. M., O'neal, S., Hebert, E. P., & Kraemer, R. R. (2003). Hormonal responses from concentric and eccentric muscle contractions. Medicine and Science in Sports and Exercise, 35(6), 937-943.
Erickson, K., Drevets, W., & Schulkin, J. (2003). Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neuroscience and Biobehavioral Reviews. 27, 233-246.
Friden, J. (2002). Delayed onset muscle soreness. Scandinavian Journal of Medicine and Science in Sports, 12, 327-328.
Ganio, M. S., Johnson, E. C., Lopez, R. M., Stearns, R. L., Emmanuel, H., Anderson, J. M., Casa, D. J., Maresh, C. M., Volek, J. S., & Armstrong, L. E. (2011). Caffeine lowers muscle pain during exercise in hot but not cool environments. Physiology and Behavior, 102, 429-435.
Ganio, M. S., Klau, J. F., Casa, D. J., Armstrong, L. E., & Maresh, C. M. (2009). Effect of caffeine on sport specific endurance performance: A systematic review. Journal of Strength and Conddition Research, 23(1), 315-324.
Gliottoni, R. C., & Motl, R. W. (2008). Effect of caffeine on leg-muscle pain during
intense cycling exercise: possible role of anxiety sensitivity. International
Journal of Sport Nutrition and Exercise Metabolism, 18, 103-115.
Gliottoni, R. C., Meyers, J. R., Arngrímsson, S. A., Broglio, S. P., & Motl, R. W. (2009). Effect of caffeine on quadriceps muscle pain during acute cycling exercise in low versus high caffeine consumers. International Journal of Sport Nutrition and Exercise Metabolism, 19, 150-161.
Goto, K., Ishii, N., Kizuka, T., Kraemer, R. R., Honda, Y., & Takamatsu, K. (2009). Hormonal
and metabolic responses to slow movement resistance exercise with different
durations of concentric and eccentric actions. European Journal of Applied Physiology
, 106, 731-739.
Graham, T. E. (2001). Caffeine and exercise: Metabolism, endurance and performance. Sports
Medicine, 31(11), 785-807.
Gruber, M., & Gollhofer, A. (2004). Impact of sensorimotor training on the rate of force development and neural activation. European Journal of Applied Physiology, 92, 98-105.
Howatson, G., Gaze, D., & van Someren, K. A. (2005). The efficacy of ice massage in the treatment of exercise-induced muscle damage. Scandinavian Journal of Medicine and Science in Sports, 15(6), 416-422.
Izquierdo, M., Ibanez, J., Calbet, J. A., Navarro-Amezqueta, I., Gonzalez-Izal, M., Idoate, F., Hakkinen, K., Kraemer, W. J., Palacions-Sarrasqueta, M., Almar, M., & Gorostiaga, E. M. (2009). Cytokine and hormone responses to resistance training. European Journal of Applied Physiology. 107, 397-409.
Jenkins, N. T., Trilk, J. L., Singhal, A., O'Connor, P. J., & Cureton, K. J. (2008). Ergogenic effects of low doses of caffeine on cycling performance. International Journal of Sport Nutrition and Exercise Metabolism, 18, 328-342.
Johnson, T. D., Elashoff, R. M., & Harkema, S. J. (2003). A Bayesian change-point analysis of electromyographic data: Detecting muscle activation patterns and associated applications. Biostatistics, 4(1), 143–164.
Kalmar, J. M., & Cafarelli, E. (1999). Effects of caffeine on neuromuscular function. Journal of Applied Physiology, 87(2), 801-808.
Katan, M. B., & Schouten, E. (2005). Caffeine and arrhythmia. American Journal of Clinical Nutrition, 81, 539–540.
Kraemer, R. R., & Hollander, D. B. (2006). Similar hormonal responses to concentric and eccentric muscle actions using relative loading. European Journal of Applied Physiology, 96, 551-557.
Kraemer, W. J., & Ratamess, N. A. (2003). Endocrine and adaptations to strength and power training. In P. V. Komi (Ed), Nutrition and the strength athlete 2nd end (pp.361-386). Malden: Blackwell Scientific Publications.
Kraemer, W. J., & Ratamess, N. A. (2005). Hormonal responses and adaptations to
resistance exercise and training. Sports Medicine, 35(4), 339-361.
Lieber, R. L., & Jan Friden, M. D. (2002). Morphologic and mechanical basis of delayed onset muscle soreness. Journal of American Academy of Orthopaedic Surgeons, 10(1), 67-73.
Lopes, J. M., Aubier, M., & Jardim, J. (1983). Effect of caffeine on skeletal muscle function before and after fatigue. Journal of Applied Physiology, 54, 1303-1305.
Macaluso, A., & De Vito, G. (2004). Muscle strength, power and adaptations to resistance training in older people. European Journal of Applied physiology, 91, 450-472.
Madigan, D. J., & Willems, M. E. T. (2011). Effect of caffeine on fatigue during submaximal isometric contractions at different knee angles. Medicina Sportiva. 15(4), 194-200.
Maridakis, V., O'Connor, P. J., Dudley, G. A., & McCully, K. K. (2007). Caffeine attenuates delayed-onset muscle pain and force loss following eccentric exercise. Journal of Pain, 8(3), 237-243.
McCaulley, G. O., & McBride, J. M. (2009). Acute hormonal and neuromuscular responses to hypertrophy, strength and power type resistance exercise. European Journal of Applied Physiolog, 105, 695-704.
McLellan, C. P., Lovell, D. I., & Gass, G. C. (2011). Markers of postmatch fatigue in professional rugby league players. Journal of Strength and Conditioning Research, 25(4), 1030-1039.
Meyers, B. M., & Cafarelli, E. (2005). Caffeine increases time to fatigue by maintaining force and not by altering firing rates during submaximal isometric contractions. Journal of Applied Physiology, 99(3), 1056-1063.
Mizumura, K. (2008). Muscular pain Mechanisms: Brief review with special consideration of
delayed onset muscle soreness. In M. Onozuka, & C. T. Yen (Eds), Novel Trends in
Brain Science: Brain imaging, learning and memory, stress and fear, and pain (pp.
203-224). Japan: Springer Japan.
Motl, R. W., O'Connor, P. J., & Dishman, R. K. (2003). Effect of caffeine on perceptions of leg muscle pain during moderate intensity cycling exercise. Journal of Pain, 4(6), 316-321.
Motl, R. W., O'Connor P, J., Tubandt, L., Puetz, T., & Ely, M. R. (2006). Effect of caffeine on leg muscle pain during cycling exercise among females. Medicine and Science in Sports and Exercise, 38(3), 598-604.
Newton, M. J., Morgan, G. T., Sacco, P., Chapman, D. W., & Nosaka, K. (2008). Comparison of responses to strenuous eccentric exercise of the elbow flexors between resistance-trained and untrained men. Journal of Strength and Conddition Research, 22(2), 597-607.
Noreen, E. E., Barr, C., McNeal, M., & Drury, D. G. (2008). The effect of caffeine ingestion on perception of muscle pain during a sustained submaximal isometric contraction of the quadriceps. Journal of the International Society of Sports Nutrition, 5(suppl 1), 18.
Nosaka, K., & Newton, M. (2002). Difference in the magnitude of muscle damage between maximal and submaximal eccentric loading. Journal of Strength and Conddition Research, 16, 202-208.
O'Connor, P. J., & Cook, D. B. (1999). Exercise and pain: the neurobiology, measurement, and laboratory study of pain in relation to exercise in humans. Exercise and Sport Sciences Reviews, 27, 119-166.
O'Connor, P. J., Motl, R. W., Broglio, S. P., & Ely, M. R. (2004). Dose-dependent
effect of caffeine on reducing leg muscle pain during cycling exercise is
unrelated to systolic blood pressure. Pain, 109(3), 291-298.
Paschalis, V., Koutedakis, Y., Jamurtas, A. Z., Mougios, V., & Baltzopoulos, V. (2005). Equal volumes of high and low intensity of eccentric exercise in relation to muscle damage and performance. Journal of Strength and Conddition Research, 19(1), 184-188.
Peake, J., Nosaka, K., & Suzuki, K. (2005). Characterization of inflammatory responses to eccentric exercise in humans. Exercise Immunology Review, 11, 64-85.
Pereira, L. N., Machado, M., Antunes, W.D., Tamy, A. L. M., Barbosa, A. A. L., & Pereira, R. (2012). Caffeine influences performance, muscle pain, muscle damage marker, but not leukocytosis in soccer players. Medicina Sportiva, 16(1), 22-29.
Peters, U., Poole, C., & Arab, L. (2001). Does tea affect cardiovascular disease? A meta-analysis. American Journal of Epidemiology, 154, 495-503.
Plaskett, C. J., & Cafarelli, E. (2001). Caffeine increases endurance and attenuates force sensation during submaximal isometric contractions. Journal of Applied Physiology, 91(4), 1535-1544.
Pollock, M. L., Gaesser, G. A., Butcher, J. D., Despres, J., Dishman, R. K., Franklin, B. A., & Garber, C. E. (1998). ACSM position stand: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise, 30(6), 975-991.
Pullinen, T., Mero, A., Huttunen, P., Pakarinen, A., & Komi, P. V. (2011). Resistance exercise-induced hormonal response under the influence of delayed onset muscle soreness in men and boys. Scandinavian Journal of Medicine and Science in Sports, 21, e184-e194.
Sawynok, J. (1998). Adenosine receptor activation and nociception. European Journal of Pharmacology, 347(1), 1-11.
Sawynok, J. (2003). Adenosine-A preipheral neuronal modulator of pain and inflammation. In M. Schafer, & C. Stein (Eds), Min over matter-regulation of peripheral inflammation by the CNS (pp. 177-192). Switzerland: Birkhauser Verlag Basel.
Sawynok, J. (2009). Adenosine receptors. In B. E. Cairns (Ed), Peripheral receptor targets for analgesia: Novel approaches to pain management (pp. 137-148). Canada: John Wiley & Sons.
Sawynok, J. (2011). Caffeine and pain. Pain, 152(4), 726-729.
Sawynok, J., & Liu, X. J. (2003). Adenosine in the spinal cord and periphery: Release and regulation of pain. Progress in Neurobiology, 69(5), 313-340.
Shield, A., & Zhou, S. (2004). Assessing voluntary muscle activation with the twitch interpolation technique. Sports Medicine, 34(4), 253–267.
Sokmen, B., Armstrong, L. E., Kraemer, W. J., Casa, D. J., Dias, J. C., Judelson, D. A., & Maresh, C. M. (2008). Caffeine use in sports: Considerations for the athlete. Journal of Strength and Conditioning Research, 22(3), 978-986.
Stadheim, H. K., Spencer, M., Olsen, R., & Jensen, J. (2014). Caffeine and performance over Consecutive days of simulated competition. Medicine and Science in Sports and Exercise, 46(9), 1787-1796.
Tarnopolsky, M., & Cupido, C. (2000). Caffeine potentiates low frequency skeletal muscle force in habitual and nonhabitual caffeine consumers. Journal of Applied Physiology, 89(5), 1719-1724.
Trevino, M. A., Coburn, J. W., Brown, L. E., Judelson, D. A., & Malek, M. H. (2015). Acute effects of caffeine on strength and muscle activation of the elbow flexors. Journal of Strength and Conditioning Research, 29(2), 513-520.
Willems, M. E. T., & Northcott, S. R. (2009). Gender differences after downhill running for voluntary isometric contractions of knee extensor muscles using surface EMG. Medicina Sportiva, 13(1), 35-42.
Williams, J. H., Barnes, W. S., & Gadberry, W. L. (1987). Influence of caffeine on force and EMG in rested and fatigued muscle. American Journal of Physical Medicine, 66, 169-83.
Wu, B. H., & Lin, J. C. (2010). Caffeine attenuates acute growth hormone response to a single
bout of resistance exercise. Journal of Sports Science and Medicine, 9, 262-269.
Yen, W. J., Wang, B. S., Chang, L.W., & Duh, P. D. (2005). Antioxidant properties of roasted coffee residues. Journal of Agricultural and Food Chemistry, 53, 2658-2663.