簡易檢索 / 詳目顯示

研究生: 戴川義
Chuan-Yi Tai
論文名稱: 光學影像技術於生物組織之研究
The study of optical imaging technique on biological tissues
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 50
中文關鍵詞: 頻域式光學同調斷層攝影系統都普勒光學微血管攝影術
英文關鍵詞: Spectral-domain optical coherence tomography system, Doppler optical micro-angiography
論文種類: 學術論文
相關次數: 點閱:110下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光學影像技術具有價格低廉、快速顯像、可攜性等優點。本研究可分為兩部分,首先,我們建立一套頻域式光學同調斷層攝影系統,用以取得生物組織的背向散射訊號。其利用同調光源於異質性之組織,藉由獲得組織其不同折射率之背向散射訊號,致使重建組織之結構影像。
    最後,我們有效利用都普勒光學微血管攝影術於仿體以及老鼠表皮血管分佈之成像。此外,並利用此技術於老鼠大腦之血管攝影實驗,使有效地成像出鼠腦之血管分佈影像。

    Optical imaging technique has the advantages of cost-effectiveness, non-invasive, rapid imaging and portability.
    In this thesis, we have two topics. Firstly, we developed a spectral-domain optical coherence tomography system to obtain biological tissue scattering, the system uses coherence gating of backscattered light for tomographic imaing of tissue structure. Variation in tissue scattering due to in-homogeneities in the optical index of refraction provide imaing contrast.
    Finally, we have successfully used Doppler optical micro-angiography (DOMAG) to image phantom flow and skin blood perfusion in mice. We then conduct in vivo experiments on a mouse brain to demonstrate that DOMAG is capable of quantifying the blood flow within cerebrovascular network.

    摘要 I ABSTRACT II 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1研究背景 1 1.2研究目的 1 第二章 理論基礎與文獻回顧 2 2.1光學同調斷層攝影術 2 2.1.1生物窗(Biological window) 4 2.1.2時域式光學同調斷層攝影術 5 2.1.3傅域式光學同調斷層攝影術 6 2.1.4物體空間掃描定義 8 2.2低同調干涉儀之成像理論 9 2.2.2低同調干涉頻譜特性 14 2.3 遠場光學之限制 16 2.4 視場參數計算 18 2.4.1共焦成像參數計算 18 2.4.2影像解析度 21 第三章 都普勒光學成像理論 22 3.1 都普勒效應 22 3.2 都普勒成像理論 25 3.3 都普勒光學成像技術 28 3.3.1 相位解析法 28 3.3.2 光斑變化測量成像法 30 3.3.3 都普勒光學微血管攝影術 31 第四章 實驗步驟與分析方法 33 4.1實驗架構 33 4.2 實驗材料與方法 35 4.2.1仿體之實驗材料與方法 35 4.2.2動物實驗之實驗材料與方法 36 4.2.2.1 老鼠表皮血管成像實驗步驟 36 4.2.2.2 老鼠大腦血管成像實驗步驟 37 4.3理論分析 38 4.3.1都普勒訊號擷取與血流成像 39 4.3.1血流影像與雜訊抑制 40 第五章 結果與討論 41 5.1 仿體實驗 41 5.1.1 仿體實驗之成像結果 41 5.2 生物組織實驗 42 5.2.1 老鼠表皮之成像結果 42 5.2.1 老鼠大腦之成像結果 44 第六章 結論與未來展望 46 6.1 結論 46 6.2 未來展望 46 參考文獻 47

    [1]Wolfgang Drexler and James G. Fujimoto, “Optical Coherence Tomography Technology and Applications” Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.

    [2]Joseph A. Izatt, Manish D. Kulkarni, Siavash Yazdanfar, Jennifer K. Barton, and Ashley J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” OPTICS LETTERS, 22, 1439-1441, 1997.

    [3]Yonghua Zhao, Zhongping Chen, Christopher Saxer, Shaohua Xiang, Johannes F. de Boer, and J. Stuart Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity, ” OPTICS LETTERS, 25, 114-116, 2000.

    [4]Zhongping Chen, Thomas E. Milner, Shyam Srinivas, Xiaojun Wang, Arash Malekafzali, Martin J. C. van Gemert, and J. Stuart Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” OPTICS LETTERS, 22, 1119-1121, 2008.

    [5]Ruikang K Wang, “Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning,” IOP PUBLISHING Ltd , PHYSICS MEDICINE BIOLOGY, 2007.

    [6]Lin An, and Ruikang K. Wang, “Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography,” Optical Society of America, Vol. 32, No. 23, 2007.

    [7]Ruikang K. Wang, “In vivo full range complex Fourier domain optical coherence tomography,” American Institute of Physics, 2007.

    [8]Ruikang K. Wang, and Andras Gruber, “Three dimensional optical angiography,” OPTICS EXPRESS 4083, Vol. 15, No. 7, 2007.

    [9]Lin An and Ruikang K Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” OPTICS EXPRESS 11438, Vol. 16, No. 15, 2008.

    [10]Ruikang K Wang, and Lin An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” OPTICS EXPRESS 8926, Vol. 17, No. 11, 2009.

    [11]Ruikang K. Wang, and Hrebesh M. Subhash, “Optical Microangiography High-Resolution 3-D Imaging of Blood Flow,” OPN Optics & Photonics News, 2009.

    [12]Ruikang K. Wang, “Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo,” IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, Vol. 16, No. 3, 2010.

    [13]Lin An, Jia Qin and Ruikang K Wang, “Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds,” OPTICS EXPRESS 8220, Vol. 18, No. 8, 2010.

    [14]Lin An, and Ruikang K. Wang, “Depth resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Optical Society of America, Vol. 35, No. 9, 2010.

    [15]Yali Jia An, and Ruikang K. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” journal of Biomedical Optics, Vol. 15, 2010.

    [16]Victor X.D. Yang, and I. Alex Vitkin, “Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation,” Optics Communications, 209-124, 2002.

    [17]Adrian Mariampillai, and Victor X. D. Yang, “Optimized speckle variance OCT imaging of microvasculature,” Optical Society of America, OPTICS LETTERS, Vol. 35, No. 8, 2010.

    [18]Chuan Wang, and Yong Yang, “Monitoring of drug and stimulation induced cerebral blood flow velocity changes in rat sensory cortex using spectral domain Doppler optical coherence tomography,” journal of Biomedical Optics, Vol. 16(4), 2011.

    [19]Panomsak Meemon, and Jannick P. Rolland, “Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography,” BIOMEDICAL OPTICS EXPRESS 955, Vol. 1, No. 3, 2010.

    [20]Lingfeng Yu, and Zhongping Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” journal of Biomedical Optics, Vol. 15(1), 2010.

    [21]Jun Zhang, and Zhongping Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” OPTICS EXPRESS 7449, Vol. 13, No. 19, 2005.

    [22]Shuichi Makita, and Yoshiaki Yasuno, “Optical coherence angiography,” OPTICS EXPRESS 7821, Vol. 14, No. 17, 2006.

    [23]Yuankai K. Tao, and Joseph A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” OPTICS EXPRESS 12350, Vol. 16, No. 16, 2008.

    [24]Dae Yu Kim, and Robert J. Zawadzki, “In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography,” BIOMEDICAL OPTICS EXPRESS 1504, Vol. 2, No. 6, 2011.

    [25]Brian R. White, and Mark C. Pierce, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography,” OPTICS EXPRESS 3490, Vol. 11, No. 25, 2003.

    [27]Wolfgang Drexler, and James G. Fujimoto, “Optical Coherence Tomography Technology and Applications,” Berlin, Heidelberg : Springer Berlin Heidelberg, 2008.

    [28]Tomasz Bajraszewski, Maciej Wojtkowski, Maciej Szkulmowski, Anna Szkulmowska, Robert Huber, and Andrzej Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” OPTICS EXPRESS 16, 4163-4176, 2008.

    [29]S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” OPTICS LETTERS, 22, 340-342, 2007.

    [30]B. Golubovic, B. E. Bouma, G. J. Tearney, and J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” OPTICS LETTERS, 22, 1704-1706, 1997.

    [31]The Warren Research Group at Duke University, http://www.chem.duke.edu/~wwarren/tissueimaging.php/

    [32]A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography principles and applications, ” Rep. Prog. Phys., vol. 66, pp. 239-303,
    2003

    下載圖示
    QR CODE