研究生: |
蔡承晏 Cai, Cheng-Yan |
---|---|
論文名稱: |
交通大數據分析以公車動態資料為例 Traffic Big Data Analysis – Take Dynamic Bus System Data as an Example |
指導教授: |
周學政
Chou, Hsueh-Cheng |
口試委員: |
陳哲銘
Chen, Che-Ming 溫在弘 Wen, Tzai-Hung 周學政 Chou, Hsueh-Cheng |
口試日期: | 2022/07/15 |
學位類別: |
碩士 Master |
系所名稱: |
地理學系 Department of Geography |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 市區公車 、地理資訊系統 、公車動態資料 、可及性 |
英文關鍵詞: | City Bus, GIS, Dynamic Bus System Data, Accessibility |
研究方法: | 個案研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202201283 |
論文種類: | 學術論文 |
相關次數: | 點閱:165 下載:25 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一般大眾運輸動態饋給規格(General Transit Feed Specification,GTFS)制定了各類型的大眾交通運輸數據的資料格式,內容包含:停靠的站點、營運的路徑、行進的順序以及時刻表等資訊,透過統一的格式,使資料能夠互通使用。國內也有公共運輸整合資訊流通服務平臺(Public Transport Data eXchange,PTX),與其他運輸平台,共同建立格式統一、標準化之資料模型包括:航空、鐵路、公車、自行車等項目,累積了大量的交通運輸資料。然而,目前對於公車動態資料的相關研究甚少。
本研究以供給層面探討大眾運輸系統的可及性現況,並利用軌道運輸及公車運輸具有固定的停靠點、行駛路線以及班次之特性,由公車動態資料拓展至大眾交通運輸資料建立以及分析系統開發,設計一套可供交通可及性分析資料架構,經過本研究所建立之清洗流程進行處理,建立交通資料庫,開發可及性及視覺化模組,應用於快速且自動化進行公共運輸系統的交通可及性評估。
在案例分析的部分,本研究利用臺北市市區公車動態車機資料,並透過交通可及性分析系統進行分析。研究結果顯示,在旅行時間30分鐘之內,以臺北火車站周遭的區域交通可及性最佳,從臺北市整體來看,可及性呈現西高東低的現象,並且於納入臺北捷運系統後,大多的分區可及性皆有所提升,尤其原先市區外圍可及性較差的區域,若鄰近捷運站,其可及性有明顯地改善。
The General Transit Feed Specification (GTFS) defines the data format of various types of public transportation data, including stops, operating routes, travel sequences, and timetables. A unified design enables data to be used interchangeably. There is also a public transport integrated information circulation service platform (Public Transport Data eXchange, PTX) in Taiwan. Together with other transport platforms, they establish a unified and standardized data model including aviation, railway, bus, bicycle and other projects, accumulating a large amount of traffic data. However, there are few related studies on dynamic bus system data.
This study explores the accessibility status of mass transit systems from the supply aspect, utilizes the characteristics of rail transit and bus transport with fixed stops, travel routes and schedules, and extends from dynamic bus data to the establishment of mass transit data and analysis system development , design a set of the data structure for traffic accessibility analysis, process it through the cleaning process established by this research, build a traffic database, develop accessibility and visualization modules, and apply it to the rapid, automated public transportation system accessibility assessment.
In the example of this implementation case, the traffic accessibility analysis system is used for analysis by using the dynamic bus system data of the city bus in Taipei. The research results show that within 30 minutes of travel time, the area around Taipei Station has the best traffic accessibility. In Taipei, accessibility is higher in the west and lower in the east. After incorporating the Taipei MRT, accessibility has improved in most districts, especially in areas with poorer accessibility outside the urban area, which have significantly improved if they are close to Metro stations.
王湮筑(2000)。市區公車之既有路線調整與新闢路線規劃程序之研究。國立交通大學交通運輸研究所碩士論文。
交通部運輸研究所 (2015)。交通部綠運輸節能減碳成果及未來推動方向之研究。
任磊、杜一、馬帥、張小龍、戴國忠(2014)。大資料可視分析綜述。軟體學報,25(9)。
李舒媛 (2018)。「以悠遊卡大數據探討YouBike租賃及轉乘捷運之使用者行為」。淡江大學運輸管理學系碩士班碩士論文。
張家輔(2005)。地理資訊系統應用於免費公車路線調整之分析。中原大學土木工程研究所碩士論文。
盛柏雄(2013)。市區公車接駁路線調整原則之研究- 以台中市BRT快捷巴士接駁路線為例。逢甲大學運輸科技與管理學系碩士論文。
陳其華、吳東凌、陳翔捷、王晉元、邱裕鈞、蘇昭銘 (2016),公車動態資訊系統巨量資料(Big Data)蒐集與視覺化分析研究(初版),臺北市:交通部運輸硏究所。
曾怡之(2019)。以租用時間探討公共自行車使用者移動的時空特徵。中國文化大學地學研究所地理組碩士論文。
臺北市政府交通局 (2019)。107年臺北市民眾日常使用運具狀況摘要分析。
臺北市政府交通局 (2019)。108年1月臺北市交通統計月報。
裴文琦 (2019)。「城市公交時空軌跡資料可視分析研究」,西南科技大學碩士論文。
蔡京津(2021)。客製化公車路線存活分析:可及性之影響。國立臺灣大學地理環境資源學研究所碩士論文。
蘇昭銘、邱裕鈞、張志鴻、王穆衡、王晉元、蔡欽同、沈美慧(2013)。公路汽車客運路線審議作業空間決策輔助指標之建立與應用。運輸計劃季刊,42(2),171-193。
Algueró, P. S. (2013). Using Smart Card Technologies to Measure Public Transport Performance: Data Capture and Analysis. Technical Report Industrial Engineering.
Benenson, I., Ben-Elia, E., Rofé, Y., & Geyzersky, D. (2017). The benefits of a high-resolution analysis of transit accessibility. International Journal of Geographical Information Science, 31(2), 213-236.
Dharmadhikari, N., & Lee, E. (2015). Average opportunity-based accessibility of public transit systems to grocery stores in small urban areas. Cogent engineering, 2(1), 1068968.
Fan, J., Fu, C., Stewart, K., & Zhang, L. (2019). Using big GPS trajectory data analytics for vehicle miles traveled estimation. Transportation research part C: emerging technologies, 103, 298-307.
Han, C., Liu, X., Shen, X., Zhang, L., & Feng, N. (2019). Evaluating the spatial deprivation of public transportation resources in areas of rapid urbanization: accessibility and social equity. Discrete Dynamics in Nature and Society, 2019.
He, F., & Shen, Z. J. M. (2015). Modeling taxi services with smartphone-based e-hailing applications. Transportation Research Part C: Emerging Technologies, 58, 93-106.
Itzhak Benenson, Eran Ben-Elia, Yodan Rofé & Dmitry Geyzersky (2017) The benefits of a high-resolution analysis of transit accessibility, International Journal of Geographical Information Science, 31:2, 213-236.
Kerren, A., Stasko, J., Fekete, J. D., & North, C. (Eds.). (2008). Information Visualization: Human-Centered Issues and Perspectives (Vol. 4950). Springer.
Rao, W., Wu, Y. J., Xia, J., Ou, J., & Kluger, R. (2018). Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data. Transportation Research Part C: Emerging Technologies, 95, 29-46.
Shneiderman, B. (1996, September). The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings 1996 IEEE symposium on visual languages (pp. 336-343). IEEE.
T. L. Lei & R. L. Church (2010) Mapping transit‐based access: integrating GIS, routes and schedules, International Journal of Geographical Information Science, 24:2, 283-304.
Tribby, C. P., & Zandbergen, P. A. (2012). High-resolution spatio-temporal modeling of public transit accessibility. Applied Geography, 34, 345-355.
Wang, Z., Ye, T., Lu, M., Yuan, X., Qu, H., Yuan, J., & Wu, Q. (2014). Visual exploration of sparse traffic trajectory data. IEEE transactions on visualization and computer graphics, 20(12), 1813-1822.
Shih-Wen Wu(2019),以公車路線解構大台北生活聚落,取自:https://medium.com/geopainter/%E4%BB%A5%E5%85%AC%E8%BB%8A%E8%B7%AF%E7%B7%9A%E8%A7%A3%E6%A7%8B%E5%A4%A7%E5%8F%B0%E5%8C%97%E7%94%9F%E6%B4%BB%E8%81%9A%E8%90%BD-3d784f1ee6a1
一般大眾運輸動態饋給規格(2022),General Transit Feed Specification,取自:https://gtfs.org
公車API靜態資料使用注意事項(2022),公共運輸整合資訊流通服務平台,取自:https://ptx.transportdata.tw/PTX/Monitor/etl
交通資訊基礎路段編碼規範(2022),運輸資料流通服務,取自:https://motclink.gitbook.io/link/lu-duan-bian-ma-nei-rong/3standard#1.-ming-ci-ding-yi
靜態大眾運輸資訊(2022)。Google Transit API,取自:https://developers.google.com/transit/gtfs