簡易檢索 / 詳目顯示

研究生: 朱昱光
Chu, Yu-Kuang
論文名稱: Development of KAGRA Photon Calibrator for Hardware Injection Test
Development of KAGRA Photon Calibrator for Hardware Injection Test
指導教授: 李沃龍
Lee, Wo-Lung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 45
中文關鍵詞: Photon CalibratorHardware Injection TestGravitational WavesKAGRA
英文關鍵詞: Photon Calibrator, Hardware Injection Test, Gravitational Waves, KAGRA
DOI URL: http://doi.org/10.6345/THE.NTNU.DP.022.2018.B04
論文種類: 學術論文
相關次數: 點閱:190下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    Photon calibrator (Pcal) is an independent device that can provide artificial input to an interferometric gravitational-wave detector by exerting the radiation pressure of its own laser on the test mass mirror in the interferometer. It not only can provide a fiducial length reference for calibration purpose but also can inject simulated gravitational waveforms to verify the response of the interferometer to the astrophysical gravitational waves, known as hardware injection test. Currently, the injection signals (Excitations) are produced by KAGRA Digital System(DGS). These signals change the intensity of PCal Laser by acousto-optic modulators (AOM) inside the transmitter module of PCal. However, if the output signal from the Digital System is noisy, it force AOM to modulate laser intensity according to such noisy control signal, resulting in noisy radiation force on the End Test Mirror (ETM). In this dissertation, we implemented and characterized an analog filter known as the De-Whitening filter. We installed it between Digital System output and PCal to address the noise problem while keeping the accuracy of injected signals.

    Abstract ii Acknowledgements iii List of Tables viii List of Figures ix 1 Introduction 1 1.1 Introduction to Gravitational Waves 2 1.1.1 What are gravitational waves 2 1.1.2 How to describe gravitational wave 3 1.2 Detection and Reconstruction of Gravitational Wave Signals 5 1.3 Photon Calibrator (Pcal) 7 1.3.1 Principle of Photon Calibrator 7 1.3.2 Evolution of Photon Calibrators 10 2 Hardware Injection through Photon Calibrator 13 2.1 Principle 13 2.2 Experimental Setup 15 3 Signal Generating System 16 3.1 KAGRA Digital Control System 16 3.2 Noise Problem of Injection Signal 19 3.2.1 Noise Sources from the Injection Signal 20 4 Noise Reduction through De-Whitening Filter 22 4.1 Concept of De-Whitening Filter 22 4.2 Circuit Design 23 4.3 Fidelity of Injection Signals 26 4.4 Noise Reduction Performance 28 4.4.1 Noise Measurement without PCal System 30 4.4.2 Noise Measurement with PCal System 34 5 Validation of Injection Channel 37 6 Discussion and Future Works 41 Bibliography 43

    [1] C. Biwer et al. Validating gravitational-wave detections: The Advanced LIGO hardware injection system. Phys. Rev. D, 95:062002, Mar 2017. doi: 10.1103/ PhysRevD.95.062002. URL https://link.aps.org/doi/10.1103/PhysRevD. 95.062002.

    [2] A Einstein. Grundgedanken und Methoden der Relativit¨atstheorie, in ihrer Entwicklung dargestellt. Fundamental Ideas and Methods of the Theory of Relativity, Presented in Their Development, after 22 Jan 1920. 1920. URL https://einsteinpapers.press.princeton.edu/vol7-trans/129.

    [3] Daniel Kennefick. Einstein Versus the Physical Review. Physics Today, 58(9):4348, 2005. doi: 10.1063/1.2117822. URL https://doi.org/10.1063/1.2117822.

    [4] A. Einstein and N. Rosen. On gravitational waves. Journal of the Franklin Institute, 223(1):43 – 54, 1937. ISSN 0016-0032. doi: https://doi. org/10.1016/S0016-0032(37)90583-0. URL http://www.sciencedirect.com/ science/article/pii/S0016003237905830.

    [5] R. A. Hulse and J. H. Taylor. Discovery of a pulsar in a binary system. ApJ, 195:L51–L53, January 1975. doi: 10.1086/181708.

    [6] J. H. Taylor and J. M. Weisberg. A new test of general relativity - Gravitational radiation and the binary pulsar PSR 1913+16. ApJ, 253:908–920, February 1982. doi: 10.1086/159690.

    [7] Joseph H. Taylor. Binary pulsars and relativistic gravity. Rev. Mod. Phys., 66: 711–719, Jul 1994. doi: 10.1103/RevModPhys.66.711. URL https://link.aps. org/doi/10.1103/RevModPhys.66.711.

    [8] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116:061102, Feb 2016. doi: 10.1103/PhysRevLett. 116.061102. URL https://link.aps.org/doi/10.1103/PhysRevLett.116. 061102.

    [9] M. Maggiore and Oxford University Press. Gravitational Waves: Volume 1: Theory and Experiments. Gravitational Waves. OUP Oxford, 2008. ISBN 9780198570745. URL https://books.google.com.tw/books?id= AqVpQgAACAAJ.

    [10] Malik Rakhmanov. Response of test masses to gravitational waves in the local Lorentz gauge. Phys. Rev. D, 71:084003, Apr 2005. doi: 10.1103/PhysRevD.71. 084003. URL https://link.aps.org/doi/10.1103/PhysRevD.71.084003.

    [11] Evan D. Hall, Craig Cahillane, Kiwamu Izumi, Rory J. E. Smith, and Rana X. Adhikari. Systematic calibration error requirements for gravitational-wave detectors via the Cram´er-Rao bound. 2017.

    [12] A D Viets, M Wade, A L Urban, S Kandhasamy, J Betzwieser, Duncan A Brown, J Burguet-Castell, C Cahillane, E Goetz, K Izumi, S Karki, J S Kissel, G Mendell, R L Savage, X Siemens, D Tuyenbayev, and A J Weinstein. Reconstructing the calibrated strain signal in the Advanced LIGO detectors. Classical and Quantum Gravity, 35(9):095015, 2018. URL http: //stacks.iop.org/0264-9381/35/i=9/a=095015.

    [13] D Tuyenbayev, S Karki, J Betzwieser, C Cahillane, E Goetz, K Izumi, S Kandhasamy, J S Kissel, G Mendell, M Wade, A J Weinstein, and R L Savage. Improving LIGO calibration accuracy by tracking and compensating for slow temporal variations. Classical and Quantum Gravity, 34(1):015002, 2017. URL http://stacks.iop.org/0264-9381/34/i=1/a=015002.

    [14] DA Clubley, GP Newton, KD Skeldon, and J Hough. Calibration of the Glasgow 10 m prototype laser interferometric gravitational wave detector using photon pressure. Physics Letters A, 283(1-2):85–88, 2001.

    [15] H P Daveloza, M Afrin Badhan, M Diaz, K Kawabe, P N Konverski, M Landry, and R L Savage. Controlling calibration errors in gravitational-wave detectors by precise location of calibration forces. Journal of Physics: Conference Series, 363(1):012007, 2012. URL http://stacks.iop.org/1742-6596/363/i= 1/a=012007.

    [16] S. Karki et al. The Advanced LIGO photon calibrators. Rev. Sci. Instrum., 87: 114503, 2016.

    [17] Rolf Bork. AdvLigo CDS Design Overview. LIGO Document Control Center, (Report No. T0900612), 2010. URL https://dcc.ligo.org/LIGO-T0900612/ public.

    [18] J. Heefner R. Abbott. Advanced LIGO Anti-aliasing and Anti-image Filter Function. LIGO Document Control Center, (Report No. T070038), 2007. URL https://dcc.ligo.org/LIGO-T070038/public.

    [19] R. Bork and A. Ivanov. AdvLigo CDS Realtime Sequencer Software. LIGO Document Control Center, (Report No. T0900607), 2012. URL https://dcc. ligo.org/LIGO-T0900607/public.

    [20] R. Bork. Real-time Code Generator (RCG) Software Component Overview. LIGO Document Control Center, (Report No. T1200291), 2012. URL https: //dcc.ligo.org/LIGO-T1200291/public.

    [21] A. Ivanov R. Bork, M. Aronsson. AdvLigo CDS Realtime Code Generator (RCG) Application Developer’s Guide. LIGO Document Control Center, (Report No. T080135), 2013. URL https://dcc.ligo.org/LIGO-T080135/public.

    [22] Y. Enomoto et al. Latest estimated sensitivity of KAGRA (v201708) *APPROVED*. JGW Document Database, (Report No. JGW-T1707038v7), 2017. URL https://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/DocDB/ ShowDocument?docid=7038.

    [23] B. P. Abbott et al. Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Phys. Rev. X, 6:041015, Oct 2016. doi: 10.1103/PhysRevX.6. 041015. URL https://link.aps.org/doi/10.1103/PhysRevX.6.041015.

    [24] Ayush Pandey, Christopher Wipf, Rana Adhikari, and Jameson Graef Rollins. Quantization Noise in Advanced LIGO Digital Control Systems. LIGO Document Control Center, (Report No. T1500351), 2015. URL https://dcc.ligo.org/ LIGO-T1500351/public.

    下載圖示
    QR CODE