研究生: |
黃昱嘉 |
---|---|
論文名稱: |
降低組蛋白去乙醯酶活性減緩果蠅模式之Tau蛋白神經毒性之研究 Down-regulation of histone deacetylase attenuates Tau neurotoxicity in Drosophila |
指導教授: |
蘇銘燦
Su, Ming-Tsan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 組蛋白去乙醯酶 、Tau蛋白 、神經退化性疾病 、果蠅 |
英文關鍵詞: | HDAC, Tau, neurodegeneration, Drosophila |
DOI URL: | https://doi.org/10.6345/NTNU202205250 |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Tau是一個被大量表現在中樞神經系統之中的蛋白,其功能為穩固神經細胞之中微管的結構,並維持神經系統的完整性。Tau蛋白在過度磷酸化及不正常聚集會造成許多退化性神經疾病通稱為”tauopathies”。這些疾病包括了阿茲海默氏症以及額顳葉失智症。由於研究顯示基因轉錄失調為tauopathies 的致病機轉之一,且抑制組蛋白去乙醯酶可改善上述病徵。因此本研究的目的在於利用果蠅模式,藉由組蛋白去乙醯酶抑制劑及核酸干擾檢驗上述推論。我們先前研究發現在果蠅過量表現人類的Tau蛋白會造成背甲上的剛毛缺少,利用此一模式以核酸干擾的方式,發現降低果蠅的組蛋白去乙醯酶的表現能有效的抑制因Tau蛋白表現所造成剛毛缺失的現象,同樣地,利用一些新穎的組蛋白去乙醯酶抑制劑也可以達到改善剛毛生長的情況,進一步我們發現核酸干擾及抑制劑的處理可增加組蛋白H3的乙醯化。而核酸干擾及組蛋白去乙醯酶抑制劑的處理會降低Tau及Tau磷酸化的表現以及提升Tau的溶解度。然而核酸干擾及部分組蛋白去乙醯酶抑制劑可增加Tau果蠅模式的壽命。綜合上述發現,我們認為降低Tau蛋白的表現量和磷酸化及增加組蛋白H3的乙醯化,可能對病徵有改善的作用。
Tau is a neuronal enriched protein whose function is to stabilize the structure of microtubules, and maintain the integrity of neuron. However, it was found that hyperphosophorylation and aberrant accumulation of Tau in the neurons can cause a group of neurodegenerations, including Alzheimer’s disease and frontotemporal dementia, which are collectively called tauopathies. Since it was reported that transcriptional dysfunction is one of the main pathomechanisms of tauopathies and inhibition of histone deactylase (HDAC) can enhance transcription and ameliorate the neuronal impairments, we would like to address the question using Drosophila as a model system. The aims of my study is to inactivate HDAC by either RNA interference (RNAi) or HDAC inhibitors (HDACIs) to test if down-regulation of HDAC is beneficial in reducing Tau toxicity in flies. We found that the notal bristle was increased in Tau-expressing flies when HDACs were knocked down by RNAi. Similarly, some novel HDAC inhibitors can exhibits same beneficial effects. We further discovered that the expression of acetylated histone H3 was increased when treated with RNAi or a dietary HDACI, Sulforaphane (SFN). The expression and phosphorylation of Tau were decrease in both treatment, and increase the solubility of Tau. Additionally, knocking down most HDAC or SFN treatment can extend the lifespan of tau expressing flies. In sum, my studies suggest that phosophorylated Tau might be the main causes of tauopathies. On the contrary, inhibition of HDAC might be beneficial to tauopathies.
Reference
Agis-Balboa, R. C., Z. Pavelka, C. Kerimoglu and A. Fischer, 2013 Loss of HDAC5 impairs memory function: implications for Alzheimer's disease. J Alzheimers Dis 33: 35-44.
Alonso, A. C., I. Grundke-Iqbal and K. Iqbal, 1996 Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2: 783-787.
Arriagada, P. V., J. H. Growdon, E. T. Hedley-Whyte and B. T. Hyman, 1992 Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology 42: 631-639.
Ballatore, C., V. M. Lee and J. Q. Trojanowski, 2007 Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci 8: 663-672.
Bancher, C., C. Brunner, H. Lassmann, H. Budka, K. Jellinger et al., 1989 Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer's disease. Brain Res 477: 90-99.
Bancher, C., I. Grundke-Iqbal, K. Iqbal, V. A. Fried, H. T. Smith et al., 1991 Abnormal phosphorylation of tau precedes ubiquitination in neurofibrillary pathology of Alzheimer disease. Brain Res 539: 11-18.
Blard, O., S. Feuillette, J. Bou, B. Chaumette, T. Frebourg et al., 2007 Cytoskeleton proteins are modulators of mutant tau-induced neurodegeneration in Drosophila. Hum Mol Genet 16: 555-566.
Boom, A., M. Authelet, R. Dedecker, C. Frederick, R. Van Heurck et al., 2009 Bimodal modulation of tau protein phosphorylation and conformation by extracellular Zn2+ in human-tau transfected cells. Biochim Biophys Acta 1793: 1058-1067.
Brand, A. H., and N. Perrimon, 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415.
Brandt, R., M. Hundelt and N. Shahani, 2005 Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochim Biophys Acta 1739: 331-354.
Brunden, K. R., J. Q. Trojanowski and V. M. Lee, 2009 Advances in tau-focused drug discovery for Alzheimer's disease and related tauopathies. Nat Rev Drug Discov 8: 783-793.
Castellani, R. J., A. Nunomura, H. G. Lee, G. Perry and M. A. Smith, 2008 Phosphorylated tau: toxic, protective, or none of the above. J Alzheimers Dis 14: 377-383.
Chatterjee, S., T. K. Sang, G. M. Lawless and G. R. Jackson, 2009 Dissociation of tau toxicity and phosphorylation: role of GSK-3beta, MARK and Cdk5 in a Drosophila model. Hum Mol Genet 18: 164-177.
Cowan, C. M., T. Bossing, A. Page, D. Shepherd and A. Mudher, 2010a Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120: 593-604.
Cowan, C. M., F. Chee, D. Shepherd and A. Mudher, 2010b Disruption of neuronal function by soluble hyperphosphorylated tau in a Drosophila model of tauopathy. Biochem Soc Trans 38: 564-570.
Duffy, J. B., 2002 GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34: 1-15.
Ermak, G., and K. J. Davies, 2002 Gene expression in Alzheimer's disease. Drugs Today (Barc) 38: 509-516.
Gan, L., 2007 Therapeutic potential of sirtuin-activating compounds in Alzheimer's disease. Drug News Perspect 20: 233-239.
Goedert, M., M. G. Spillantini, R. Jakes, D. Rutherford and R. A. Crowther, 1989 Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 3: 519-526.
Gong, C. X., F. Liu, I. Grundke-Iqbal and K. Iqbal, 2005 Post-translational modifications of tau protein in Alzheimer's disease. J Neural Transm 112: 813-838.
Govindarajan, N., P. Rao, S. Burkhardt, F. Sananbenesi, O. M. Schluter et al., 2013 Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 5: 52-63.
Hernandez, F., and J. Avila, 2007 Tauopathies. Cell Mol Life Sci 64: 2219-2233.
Iijima-Ando, K., and K. Iijima, 2010 Transgenic Drosophila models of Alzheimer's disease and tauopathies. Brain Struct Funct 214: 245-262.
Iqbal, K., C. Alonso Adel, S. Chen, M. O. Chohan, E. El-Akkad et al., 2005 Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739: 198-210.
Iqbal, K., F. Liu, C. X. Gong, C. Alonso Adel and I. Grundke-Iqbal, 2009 Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118: 53-69.
Khurana, V., 2008 Modeling Tauopathy in the fruit fly Drosophila melanogaster. J Alzheimers Dis 15: 541-553.
Kosik, K. S., and H. Shimura, 2005 Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta 1739: 298-310.
Liu, F., T. Zaidi, K. Iqbal, I. Grundke-Iqbal, R. K. Merkle et al., 2002 Role of glycosylation in hyperphosphorylation of tau in Alzheimer's disease. FEBS Lett 512: 101-106.
Necula, M., and J. Kuret, 2004 Pseudophosphorylation and glycation of tau protein enhance but do not trigger fibrillization in vitro. J Biol Chem 279: 49694-49703.
Nishimura, I., Y. Yang and B. Lu, 2004 PAR-1 kinase plays an initiator role in a temporally ordered phosphorylation process that confers tau toxicity in Drosophila. Cell 116: 671-682.
Ramsden, M., L. Kotilinek, C. Forster, J. Paulson, E. McGowan et al., 2005 Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25: 10637-10647.
Shulman, J. M., and M. B. Feany, 2003 Genetic modifiers of tauopathy in Drosophila. Genetics 165: 1233-1242.
Spittaels, K., C. Van den Haute, J. Van Dorpe, K. Bruynseels, K. Vandezande et al., 1999 Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. Am J Pathol 155: 2153-2165.
Stokin, G. B., C. Lillo, T. L. Falzone, R. G. Brusch, E. Rockenstein et al., 2005 Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 307: 1282-1288.
Sun, X. Y., Y. P. Wei, Y. Xiong, X. C. Wang, A. J. Xie et al., 2012 Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J Biol Chem 287: 11174-11182.
Terwel, D., R. Lasrado, J. Snauwaert, E. Vandeweert, C. Van Haesendonck et al., 2005 Changed conformation of mutant Tau-P301L underlies the moribund tauopathy, absent in progressive, nonlethal axonopathy of Tau-4R/2N transgenic mice. J Biol Chem 280: 3963-3973.
Weingarten, M. D., A. H. Lockwood, S. Y. Hwo and M. W. Kirschner, 1975 A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A 72: 1858-1862.
Wittmann, C. W., M. F. Wszolek, J. M. Shulman, P. M. Salvaterra, J. Lewis et al., 2001 Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 293: 711-714.
Xiong, Y., K. Zhao, J. Wu, Z. Xu, S. Jin et al., 2013 HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila. Proc Natl Acad Sci U S A 110: 4604-4609.
Yeh, P. A., C. J. Chang, P. H. Tu, H. I. Wilson, J. Y. Chien et al., 2010 Phosphorylation alters tau distribution and elongates life span in Drosophila. J Alzheimers Dis 21: 543-556.
Yen, S. H., W. K. Liu, F. L. Hall, S. D. Yan, D. Stern et al., 1995 Alzheimer neurofibrillary lesions: molecular nature and potential roles of different components. Neurobiol Aging 16: 381-387.