簡易檢索 / 詳目顯示

研究生: 蔡汶錫
論文名稱: 結合基因與C-Means演算法則之向量量化器設計之研究
指導教授: 黃文吉
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 36
中文關鍵詞: 向量量化器全域最佳解
英文關鍵詞: Memetic algorithm, Vector quantizers, Steady-state genetic algorithm, C-Means algorithm
論文種類: 學術論文
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個memetic algorithm (MA) 的演算法則來設計向量量化器。此演算法則使用steady-state genetic algorithm (GA) 做全域的搜尋,並採用C-Means演算法則進行局部的改善。與一般利用generational GA 做全域搜尋的MA比較之,本論文所提出的 MA 有效降低了vector quantization (VQ)訓練時的計算時間。除此之外,此演算法的結果接近全域最佳解,且對於初始的碼字選擇並不敏銳。最後的統計數據顯示,本論文所提出的steady-state MA與利用generational GA演算法執行全域搜尋的MA於相同基因族群個數的情況下,steady-state MA明顯的降低了CPU的計算時間。

    A novel memetic algorithm (MA) for the design of vector quantizers (VQs) is presented in this paper. The algorithm uses steady-state genetic algorithm (GA) for the global search and C-Means algorithm for the local improvement. As compared with the usual MA using the generational GA for global search, the proposed MA effectively reduce the computational time for VQ training. In addition, it attains near global optimal solution, and its performance is insensitive to the selection of initial codewords. Numerical results show that the proposed algorithm has significantly lower CPU time over other MA counterparts running on the same genetic population size for VQ design.

    中文摘要 .................................................. i 英文摘要 ................................................. ii 誌謝 .................................................... iii 目錄 ..................................................... iv 附圖目錄.................................................. vi 附表目錄 ................................................ vii 第一章 緒論 .............................................. 1 1.1 研究背景與動機目的 ........................ 1 1.2 全文架構 .................................. 5 第二章 基礎理論介紹 ................................... 7 2.1 C-Means 演算法............................. 7 2.2 Basic MA 演算法 ...........................12 第三章 Steady-state MA 的實現 ........................ 18 第四章 實驗結果與效能比較 .............................24 第五章 結論與未來展望 .................................32 5.1 結論 ......................................32 5.2 未來展望 ..................................34 參考文獻 ..................................................35

    [1] Areibi, S., Moussa, M., and Abdullah, H., “ A Comparison of Genetic/Memetic Algorithms and Heuristic Searching,” Proc. International Conference on Artificial Intelligence, pp.660-666, June 2001.
    [2] Coe, S., Areibi, S., Moussa, M., A hardware Memetic accelerator for VLSI circuit partitioning, Computers and Electrical Engineering, Vol. 33, 99.233-248, 2007.
    [3] Eiben, A. E., and Smith, J. D., Introduction to Evolutionary Computing, Springer, 2003.
    [4] Gersho, A., and Gray, R.M., Vector Quantization and Signal Compression, Kluwer, Norwood, Massachusetts, 1992.
    [5] Goldberg, D.E., and Deb, K., “A comparative analysis of selection schemes used in genetic algorithms,” In G.J.E. rawlins, editor, Fundations of Genetic Algorithm, pp.69-93, Morgan Kaufman, 1991.
    [6] Merz, P., and Freisleben, B .,“Genetic algorithms for binary quadratic programming ,” Proc. the Genetic and Evolution Computation Conference, pp. 417-424, 1999.
    [7] Radcliffe, N. J., and Surry, P.D., “Formal memetic algorithms,” Lecture Notes in Computer Science, Vol. 865, pp.1-16, 1994.
    [8] Rasheed, K., and Davisson, B.D., “Effect of global parallelism on the behave of a steady state genetic algorithm for design optimization,” In Proceedings of the Congress on Evolutionary Computation, Washington, DC, 1999.
    [9] Scheunders, S., “A genetic c-means clustering algorithm applied to color image quantization,” Pattern Recognition, Vol. 30, 6, pp. 859-866, 1997.
    [10] Srinivas, M., and Patnaik, L.M., “Genetic algorithm: a survey,” IEEE Computer, Volume 27, pp. 17-26, 1994.

    無法下載圖示 本全文未授權公開
    QR CODE