研究生: |
江裕翔 Chiang, Yu-Hsiang |
---|---|
論文名稱: |
以遠紅外線桑拿進行對比浴對阻力運動後生理恢復與肌肉適能表現之影響 Effects of contrast bath therapy with far-infrared sauna on physiological recovery and muscle fitness after resistance exercise |
指導教授: |
鄭景峰
Cheng, Ching-Feng |
學位類別: |
碩士 Master |
系所名稱: |
運動競技學系 Department of Athletic Performance |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 疲勞 、恢復策略 、冷熱交替 、延遲性肌肉痠痛 |
英文關鍵詞: | fatigue, recovery strategy, alternating hot and cold, DOMS |
DOI URL: | http://doi.org/10.6345/NTNU202000070 |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目的:本研究旨在探討以遠紅外線桑拿 (far-infrared sauna) 進行對比浴 (contrast bath therapy, CBT) 對於阻力運動後生理恢復與肌肉適能表現之影響。方法:本研究招募24名健康男性進行實驗。在完成阻力運動 (10組 × 10下70%最大肌力之平行蹲舉) 之後,以隨機分配之方式將受試者分為2組並進行恢復處理,分別為CBT (3組 × 11°C進行5分鐘與100°C進行5分鐘) 與控制組 (CON)。在阻力運動前 (pre) 與後 (post)、恢復後 (rec)、運動後90分鐘 (1.5 h)、運動後24 (24 h) 及48 (48 h) 小時,實施下蹲跳、蹲踞跳與大腿中段等長上拉之測驗,並詢問疼痛程度自覺量表。在pre、1.5 h、24 h及48 h,檢測肌酸激酶 (creatine kinase, CK)、膝關節活動度與大腿圍。在pre、post及rec,檢測血乳酸。結果:2組之CK於1.5 h、24 h及48 h顯著高於pre。在下蹲跳方面,CBT之離地時間、跳躍高度 (CBT vs. CON, 0.35 ± 0.06 vs. 0.30 ± 0.05 m, p < .05) 及最大發力率於24 h顯著高於CON。在蹲踞跳方面,CBT之力量峰值在24 h及48 h顯著高於CON;CBT之最大發力率在rec及48 h (CBT vs. CON, 8481 ± 3675 vs. 5191 ± 1812 N/s, p < .05) 顯著高於CON。在大腿中段等長上拉方面,CBT之力量峰值 (1.5 h: CBT vs. CON, 1091 ± 198 vs. 883 ± 208 N, p < .05)、平均力量及總衝量於1.5 h、24 h及48 h顯著高於CON;CBT之最大發力率於rec及48 h顯著高於CON。在生理指標方面,CBT之疼痛自覺程度於24 h及48 h顯著低於CON;CBT之膝關節活動度於48 h顯著高於CON;CBT之血乳酸下降率顯著高於CON;關於CK與大腿圍,2組間均無顯著差異。結論:以遠紅外線桑拿進行的CBT,能夠促進衰竭性阻力運動後之生理恢復並改善肌力與爆發力表現。
Purpose: To investigate the effects of contrast bath therapy (CBT) administered by far-infrared sauna on physiological responses and muscle fitness following the resistance exercise. Methods: 24 healthy males were randomly assigned to one of two recovery groups following resistance exercise (10 sets × 10 parallel squats at 70% 1 repetition maximum): CBT (3 sets × 11°C for 5 min and 100°C for 5 min) and control (CON). Countermovement jump (CMJ), squat jump (SJ), isometric mid-thigh pull (IMTP), and visual analogue scale (VAS) were measured before (pre) and after (post) resistance exercise, immediately post-recovery (rec), 1.5 (1.5 h), 24 (24 h) and 48 h (48 h) post-exercise. Creatine kinase (CK), knee range of motion (ROM), thigh circumference (CIR) were measured at pre, 1.5 h, 24 h, and 48 h. Blood lactate (La) was measured at pre, post, and rec. Results: CK at 1.5 h, 24 h and 48 h was significantly higher than that at pre in both groups. During the CMJ, flight time, jump height (CBT vs. CON, 0.35 ± 0.06 vs. 0.30 ± 0.05 m, p < .05), and maximal rate of force development (RFDmax) at 24 h in CBT were significantly higher than that in CON. During the SJ, peak force at 24 h and 48 h in CBT was significantly higher than that in CON; RFDmax at rec and 48 h (CBT vs. CON, 8481 ± 3675 vs. 5191 ± 1812 N/s, p < .05) was significantly higher than that in CON. During the IMTP, peak force (1.5 h: CBT vs. CON, 1091 ± 198 vs. 883 ± 208 N, p < .05), mean force, and total impulse at 1.5 h, 24 h and 48 h in CBT were significantly higher than that in CON. VAS at 24 h and 48 h was significantly lower than that in CON. ROM at 48 h was significantly higher than that in CON. La descent rate after resistance exercise in CBT was significantly higher than that in CON. However, there were no significant differences in CK and CIR among groups. Conclusion: CBT with far-infrared sauna was likely to facilitate physiological recovery, and improve muscular strength and explosive performance after exhaustive resistance exercise.
王令儀 (2008)。運動生物力學手冊─測力板篇─。臺北市:師大書苑有限公司。
林正常 (2011)。運動生理學。臺北市:師大書苑有限公司。
林貴福、張正琪、蔡忠昌、呂香珠、洪偉欽、朱真儀、鄭景峰、李佳倫、郭堉圻、蔡櫻蘭 (譯) (2010)。運動生理學。臺北市:禾楓書局有限公司。(Wilmore, J. H., Costill, D. L., & Kenney, W. L., 1982)
周宇傑、陳信良、陳忠慶、林明儒 (2018)。離心運動引起不同程度血液肌酸激酶個別差異與肌肉損傷相關評估指標之關係。體育學報,51(1),13–24。doi: 10.3966/102472972018035101002
陳忠慶 (2004)。運動引起肌肉損傷的原因之探討。運動生理暨體能學報,1,19–32。doi: 10.6127/JEPF.2004.01.03
Beckham, G. K., Sato, K., Santana, H. A. P., Mizuguchi, S., Haff, G. G., & Stone, M. H. (2018). Effect of body position on force production during the isometric midthigh pull. Journal of Strength and Conditioning Research, 32(1), 48–56. doi: 10.1519/JSC.0000000000001968
Beever, R. (2009). Far-infrared saunas for treatment of cardiovascular risk factors: Summary of published evidence. Canadian Family Physician, 55(7), 691–696.
Bieuzen, F., Bleakley, C. M., & Costello, J. T. (2013). Contrast water therapy and exercise induced muscle damage: A systematic review and meta-analysis. Public Library of Science One, 8(4), e62356. doi: 10.1371/journal.pone.0062356
Borg, G. A. (1982). Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14(5), 377–381.
Bobbert, M. F., & Van Soest, A. J. (1994). Effects of muscle strengthening on vertical jump height. Medicine and Science in Sports and Exercise, 26(8), 1012–1020. doi: 10.1249/00005768-199408000-00013
Chen, T. C., Lin, K. Y., Chen, H. L., Lin, M. J., & Nosaka, K. (2011). Comparison in eccentric exercise-induced muscle damage among four limb muscles. European Journal of Applied Physiology, 111(2), 211–223. doi: 10.1007/s00421-010-1648-7
Cheung, K., Hume P., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine, 33(2), 145–164.
Clarkson, P. M., & Hubal, M. J. (2002). Exercise-induced muscle damage in humans. American Journal of Physical Medicine and Rehabilitation, 81(11), 52–69. doi: 10.1097/01.PHM.0000029772.45258.43
Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine and Science in Sports and Exercise, 24(5), 512–520.
Coffey, V., Leveritt, M., & Gill, N. (2004). Effect of recovery modality on 4-hour repeated treadmill running performance and changes in physiological variables. Journal of Science and Medicine in Sport, 7(1), 1–10.
Crowe, M. J., O'Connor, D., & Rudd, D. (2007). Cold water recovery reduces anaerobic performance. International Journal of Sports Medicine, 28(12), 994–998. doi: 10.1055/s-2007-965118
Cochrane, D. (2004). Alternating hot and cold water immersion for athlete recovery: A review. Physical Therapy in Sport, 5, 26–32. doi: 10.1016/j.ptsp.2003.10.002
Dawson, B., Gow, S., Modra, S., Bishop, D., & Stewart, G. (2005). Effects of immediate post-game recovery procedures on muscle soreness, power and flexiblity levels over the next 48 hours. Journal of Science and Medicine in Sport, 8(2), 210–221. doi: 10.1016/s1440-2440(05)80012-x
De Nardi, M., La Torre, A., Barassi, A., Ricci, C., & Banfi, G. (2011). Effects of cold-water immersion and contrast-water therapy after training in young soccer players. The Journal of Sports Medicine and Physical Fitness, 51(4), 609–615.
Dover, J. S., Phillips, T. J., & Arndt, K. A. (1989). Cutaneous effects and therapeutic uses of heat with emphasis on infrared radiation. Journal of the American Academy of Dermatology, 20, 278–286.
Ebbeling, C. B., & Clarkson, P. M. (1989). Exercise-induced muscle damage and adaptation. Sports Medicine, 7(4), 207–234. doi: 10.2165/00007256-198907040-00001
Ernst, E. (1989). Sauna-a hobby or for health? Journal of the Royal Society of Medicine, 82(11), 639.
Eston, R., & Peters, D. (1999). Effects of cold water immersion on the symptoms of exercise-induced muscle damage. Journal of Sports Sciences, 17(3), 231–238. doi: 10.1080/026404199366136
Fleck, S. J., & Kraemer, W. J. (1997). Designing resistance training programs (2nd ed.). Champaign, IL: Human Kinetics.
French, D. N., Thompson, K. G., Garland, S. W., Barnes, C. A., Portas, M. D., Hood, P. E., & Wilkes, G. (2008). The effects of contrast bathing and compression therapy on muscular performance. Medicine and Science in Sports and Exercise, 40(7), 1297–1306. doi: 10.1249/MSS.0b013e31816b10d5
Garcia, C. A., da Mota, G. R., & Marocolo, M. (2016). Cold water immersion is acutely detrimental but increases performance post-12 h in rugby players. International Journal of Sports Medicine, 37(8), 619–624. doi: 10.1055/s-0035-1565200
Gill, N. D., Beaven, C. M., & Cook, C. (2006). Effectiveness of post-match recovery strategies in rugby players. British Journal of Sports Medicine, 40(3), 260–263. doi: 10.1136/bjsm.2005.022483
Giroux, C., Guilhem, G., Chollet, D., & Rabita, G. (2014). Muscle coordination in loaded squat jump. Computer Methods in Biomechanics and Biomedical Engineering, 17, 158–159. doi: 10.1080/10255842.2014.931621
Habib, M. E., Punnoose, T., & Thomas, C. (2007). Deep burns caused by far-infrared rays in a chiropractic sales centre. Annals of Burns and Fire Disasters, 20(2), 104–106.
Hamlin, M. J. (2007). The effect of contrast temperature water therapy on repeated sprint performance. Journal of Science and Medicine in Sport, 10(6), 398–402. doi: 10.1016/j.jsams.2007.01.002
Hardy, M., & Woodall, W. (1998). Therapeutic effects of heat, cold, and stretch on connective tissue. Journal of Hand Therapy, 11(2), 148–156. doi:10.1016/s0894-1130(98)80013-6
Higgins, D., & Kaminski, T. W. (1998). Contrast therapy does not cause fluctuations in human gastronemius intramuscular temperature. Journal of Athletic Training, 33(4), 336–340.
Hing, W. A., White, S. G., Bouaaphone, A., & Lee, P. (2008). Contrast therapy—A systematic review. Physical Therapy in Sport, 9(3), 148–161. doi:10.1016/j.ptsp.2008.06.001
Howatson, G., Goodall, S., & van Someren, K. A. (2009). The influence of cold water immersions on adaptation following a single bout of damaging exercise. European Journal of Applied Physiology, 105(4), 615–621. doi: 10.1007/s00421-008-0941-1
Ingram, J., Dawson, B., Goodman, C., Wallman, K., & Beilby, J. (2009). Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. Journal of Science and Medicine in Sport, 12(3), 417–421. doi: 10.1016/j.jsams.2007.12.011
Jakeman, J., Macrae, R., & Eston, R. (2009). A single 10-min bout of cold water immersion therapy after strenuous plyometric exercise has no beneficial effect on recovery from the symptoms of exercise-induced muscle damage. Ergonomics, 52(4), 456–460. doi: 10.1080/00140130802707733
Kinugasa, T., & Kilding, A. E. (2009). A comparison of post-match recovery strategies in youth soccer players. Journal of Strength and Conditioning Research, 23(5), 1402–1407. doi: 10.1519/jsc.0b013e3181a0226a
Kraemer, W. J., French, D. N., & Spiering, B. A. (2004). Compression in the treatment of acute muscle injuries in sport. International Journal of Sports Medicine, 5(3), 200–208.
Kukkonen-Harjula, K., & Kauppinen, K. (2006). Health effects and risks of sauna bathing. International Journal of Circumpolar Health, 65(3), 195–205.
Kuligowski, L. A., Lephart, S. M., Giannantonio, F. P., & Blanc, R. O. (1998). Effect of whirlpool therapy on the signs and symptoms of delayed-onset muscle soreness. Journal of Athletic Training, 33(3), 222–228.
Lucertini, F., Gervasi, M., D'Amen, G., Sisti, D., Rocchi, M. B. L., Stocchi, V., & Benelli, P. (2017). Effect of water-based recovery on blood lactate removal after high-intensity exercise. Public Library of Science One, 12(9), e0184240. doi: 10.1371/journal.pone.0184240
Machado, A. F., Ferreira, P. H., Micheletti, J. K., de Almeida, A. C., Lemes, Í. R., Vanderlei, F. M., Netto, Junior. J., & Pastre, C. M. (2016). Can water temperature and immersion time influence the effect of cold water immersion on muscle soreness? A systematic review and meta-analysis. Sports Medicine, 46(4), 503–514. doi: 10.1007/s40279-015-0431-7
Maffiuletti, N. A., Aagaard, P., Blazevich, A. J., Folland, J., Tillin, N., & Duchateau, J. (2016). Rate of force development: Physiological and methodological considerations. European Journal of Applied Physiology, 116(6), 1091–1116. doi:10.1007/s00421-016-3346-6
McGuigan, M. R., Winchester, J. B., & Erickson, T. (2006). The importance of isometric maximum strength in college wrestlers. Journal of Sports Science and Medicine, 5, 108–113.
Mero, A., Tornberg, J., Mäntykoski, M., & Puurtinen, R. (2015). Effects of far-infrared sauna bathing on recovery from strength and endurance training sessions in men. Springer Plus, 4, 321–327. doi: 10.1186/s40064-015-1093-5
Malanga, G. A., Yan, N., & Stark, J. (2015). Mechanisms and efficacy of heat and cold
therapies for musculoskeletal injury. Postgraduate Medicine, 127(1), 57-65. doi: 10.1080/00325481.2015.992719
Morton, R. H. (2007). Contrast water immersion hastens plasma lactate decrease after intense anaerobic exercise. Journal of Science and Medicine in Sport, 10(6), 467–470. doi: 10.1016/j.jsams.2006.09.004
Myrer, J. W., Draper, D. O., & Durrant, E. (1994). Contrast therapy and intramuscular temperature in the human leg. Journal of Athletic Training, 29(4), 318–324.
Northey, J. M., Rattray, B., Argus, C. K., Etxebarria, N., & Driller, M. W. (2016). Vascular occlusion and sequential compression for recovery after resistance exercise. Journal of Strength and Conditioning Research, 30(2), 533–539. doi: 10.1519/JSC.0000000000001080
Parouty, J., Al Haddad, H., Quod, M., Leprêtre, P. M., Ahmaidi, S., & Buchheit, M. (2010). Effect of cold water immersion on 100-m sprint performance in well-trained swimmers. European Journal of Applied Physiology, 109(3), 483–490. doi: 10.1007/s00421-010-1381-2
Pournot, H., Bieuzen, F., Duffield, R., Lepretre, P. M., Cozzolino, C., & Hausswirth, C. (2011). Short term effects of various water immersions on recovery from exhaustive intermittent exercise. European Journal of Applied Physiology, 111(7), 1287–1295. doi: 10.1007/s00421-010-1754-6
Robergs, R. A., Ghiasvand, F., Parker, D. (2004). Biochemistry of exercise-induced metabolic acidosis. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 287(3), R502–R516. doi: 10.1152/ajpregu.00114.2004
Robey, E., Dawson, B., Goodman, C., & Beilby, J. (2009). Effect of postexercise recovery procedures following strenuous stair-climb running. Research in Sports Medicine, 17(4), 245–259. doi: 10.1080/15438620902901276
Rodacki, A. L. F., Fowler, N. E., & Bennett, S. J. (2002). Vertical jump coordination: Fatigue effects. Medicine and Science in Sports and Exercise, 34(1), 105–116. doi: 10.1097/00005768-200201000-00017
Rodenburg, J. B., Bär, P. R., & De Boer, R. W. (1993). Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. Journal of Applied Physiology, 74(6), 2976–2983. doi: 10.1152/jappl.1993.74.6.2976
Schniepp, J., Campbell, T. S., Powell, K. L., & Pincivero, D. M. (2002). The effects of cold-water immersion on power output and heart rate in elite cyclists. Journal of Strength and Conditioning Research, 16(4), 561–566.
Sharkey, B. J., & Gaskill, S. E. (2006). Sport physiology for coaches. Champaign, IL: Human Kinetics.
Stephens, J. M., Halson, S., Miller, J., Slater, G. J., & Askew, C. D. (2017). Cold-water immersion for athletic recovery: One size does not fit all. International Journal of Sports Physiology and Performance, 12(1), 2–9. doi: 10.1123/ijspp.2016-0095
Tufano, J. J., Conlon, J. A., Nimphius, S., Brown, L. E., Seitz, L. B., Williamson, B. D., & Haff, G. G. (2016). Maintenance of velocity and power with cluster sets during high-volume back squats. International Journal of Sports Physiology and Performance, 11(7), 885–892. doi: 10.1123/ijspp.2015-0602
Vaile, J. M., Gill, N. D., & Blazevich, A. J. (2007). The effect of contrast water therapy on symptoms of delayed onset muscle soreness. Journal of Strength and Conditioning Research, 21(3), 697–702. doi: 10.1519/R-19355.1
Vaile, J., Halson, S., Gill, N., & Dawson, B. (2008). Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness. European Journal of Applied Physiology, 102(4), 447–455. doi: 10.1007/s00421-007-0605-6
Versey, N. G., Halson, S. L., & Dawson, B. T. (2011). Effect of contrast water therapy duration on recovery of cycling performance: A dose-response study. European Journal of Applied Physiology, 111(1), 37–46. doi: 10.1007/s00421-010-1614-4
Versey, N. G., Halson, S. L., & Dawson, B. T. (2012). Effect of contrast water therapy duration on recovery of running performance. International Journal of Sports Physiology and Performance, 7(2), 130–140.
Versey, N. G., Halson, S. L., & Dawson, B. T. (2013). Water immersion recovery for athletes: Effect on exercise performance and practical recommendations. Sports Medicine, 43(11), 1101–1130. doi: 10.1007/s40279-013-0063-8
Vieira, A., Siqueira, A. F., Ferreira-Junior, J. B., do Carmo, J., Durigan, J. L., Blazevich, A., & Bottaro, M. (2016). The effect of water temperature during cold-water immersion on recovery from exercise-induced muscle damage. International Journal of Sports Medicine, 37(12), 937–943. doi: 10.1055/s-0042-111438
Webb, N. P., Harris, N. K., Cronin, J. B., & Walker, C. (2013). The relative efficacy of three recovery modalities after professional rugby league matches. Journal of Strength and Conditioning Research, 27(9), 2449–2455. doi: 10.1519/JSC.0b013e31827f5253
Wilcock, I. M., Cronin, J. B., & Hing, W. A. (2006). Physiological response to water immersion: A method for sport recovery? Sports Medicine, 36(9), 747–765. doi: 10.2165/00007256-200636090-00003
Woolley, B. P., Jakeman, J. R., & Faulkner, J. A. (2014). Multiple sprint exercise with a short deceleration induces muscle damage and performance impairment in young, physically active males. Journal of Athletic Enhancement, 3(2). doi: 10.4172/2324-9080.1000144