簡易檢索 / 詳目顯示

研究生: 陳元美
Yuan-Mei Chen
論文名稱: 以基於混合多準則決策模式之情境分析法預測警用網路電話之部署
Predicting the Deployment of VoIP Based Police Telecommunications by Using the Hybrid MCDM Based Scenario Analysis Method
指導教授: 黃啟祐
Huang, Chi-Yo
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 104
中文關鍵詞: 警察通訊情境分析法多準則決策分析
英文關鍵詞: Police Communication System, Scenario Analysis, MCDM
論文種類: 學術論文
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著網路使用的普及化,將語音壓縮成數據封包透過網路傳輸的網路電話技術也逐漸被私人企業組織及政府機關所採用。在政府機關方面,警察因著工作性質的特殊性,且在警察勤務上大量使用電話聯繫,應擁有獨立之警察通訊架構;並為因應通訊技術的演進,現今亦應考慮導入網路電話技術。惟網路電話之傳輸方式不同於以實纜構通之傳統電話,又警察工作具有其特殊性,其通訊適用情況應無法比照民用通訊,網路電話是否適用於警察勤務聯繫、又較為適用的環境為何,迄今尚不明確。若欲於現有通訊架構下建構網路電話,須挹注大筆經費,為避免無效之政府財務開支,期能在建置前期運用決策分析方式,模擬網路電話在不同情境下的建構規劃及適用情況,並預測未來此項技術在警察實務使用上的結合。本研究擬利用情境分析法(Scenario Analysis)設定不同影響變項以建立不同的情境,並運用結合決策實驗室分析法(DEMATEL)分析領先用戶的意見,藉以預測網路電話在不同情境下部署於警察通訊架構的影響因素,以規劃及擬想未來此技術於警察實務聯繫的適用情形。研究結果發現,在外部環境條件開放且資源充裕的情境下,網路電話本身的技術特性為較主要的影響因素;反之當外部環境條件較封閉資源匱乏時,成本的影響較為顯著。

    With the popularization of the Internet, Voice over Internet Protocol (VoIP) technology, which make speech compression into data packets transmitted over the network technology, have gradually been adopted by private enterprises and government agencies. In government agencies, the police system because of the special nature of the work, and extensive use of the police service on telephone contact, should have dedicated telecommunications. In response to the evolution of communication technology, today introduced VoIP technology should be considered. However, since the VoIP transmission mode is totally different to traditional telephones, and the police work has its particularity, whether the novel communications technology can be applied to the police works its communications applicable situation should not be compared with civilian communications. It is not clear so far that which factors are the key factors influencing police to apply the VoIP technology, and there's less research to discuss the topic. This study intends to use the Hybrid MCDM based Scenario Analysis Method setting variables to create different effects on different scenarios, in order to predict VoIP in different contexts on the deployment of police communications architecture to plan and think about the future of this technology to be in police work contact the applicable circumstances. The results showed that, in the scenario of the conditions in the external environment is open and abundant resources, the technical characteristics of VoIP is the more significant factor; On the other hand, when the conditions in the external environment is closed and lack of resources, there are more significant impact on cost.

    中文摘要……………………………………………………………………………………………………………………………………i ABSTRACT………………………………………………………………………………………………………………………………ii CONTENTS………………………………………………………………………………………………………………………………iv LIST OF FIGURES……………………………………………………………………………………………………………vi LIST OF TABLES……………………………………………………………………………………………………………vii Chapter 1 Introduction…………………………………………………………………………………8 1.1 Research Backgrounds……………………………………………………………………………8 1.2 Research Motivations and Problems………………………………………10 1.3 Research Objectives and Limitations…………………………………12 1.4 Research Method and Framework…………………………………………………14 Chapter 2 Literature Review…………………………………………………………………17 2.1 Scenario Analysis…………………………………………………………………………………17 2.2 PEST Analysis……………………………………………………………………………………………21 2.3 Lead User Theory……………………………………………………………………………………23 2.4 Task-technology fit model (TTF)……………………………………………24 2.5 Information System Success Model (ISSM)………………………28 2.6 The Research Model………………………………………………………………………………32 Chapter 3 Research Methods……………………………………………………………………33 3.1 Modified Delphi Method……………………………………………………………………33 3.2 Decision Making Trial and Evaluation Laboratory…37 3.3 Analytic Network Process (ANP)………………………………………………43 3.4 DEMATEL based Network Process (DNP) Technique………50 Chapter 4 Empirical Study………………………………………………………………………55 4.1 Public Switched Telephone Network………………………………………55 4.2 Voice over Internet Protocol……………………………………………………56 4.3 Hybrid Voice Communications………………………………………………………57 4.4 Steps of Scenario Analysis…………………………………………………………59 4.4.1 Identify Focal Issue or Decision……………………………………59 4.4.2 Key Forces in the Local Environment……………………………60 4.4.3 Driving Forces……………………………………………………………………………………64 4.4.4 Rank by Importance and Uncertainty………………………………65 4.4.5 Selecting the Scenario Logics……………………………………………67 4.4.6 Fleshing out the Scenarios……………………………………………………72 4.4.7 Implications…………………………………………………………………………………………74 4.4.8 Selection of Leading Indicators and Signposts…81 Chapter 5 Discussion……………………………………………………………………………………84 5.1 Compared With the Research Model…………………………………………84 5.2 Scenario 1: Diligent Development…………………………………………86 5.3 Scenario 2: Steady………………………………………………………………………………88 5.4 Scenario 8: Stick to the City…………………………………………………89 Chapter 6 Conclusion……………………………………………………………………………………91 REFERENCE…………………………………………………………………………………………………………………………93 附錄:專家問卷………………………………………………………………………………………………………… ………97

    Ajzen, I. (1991). The Theory of Planned Behavior. Organizational behavior and human decision processes, 50(2), 179-211.
    Boyle, R. P. (1970). Path analysis and ordinal data. American Journal of Sociology, 75(4), 461-480.
    Chakravarti, A. K., Vasanta, B., Krishnan, A. S. A., & Dubash, R. K. (1998). Modified Delphi methodology for technology forecasting case study of electronics and information technology in India. Technological Forecasting and Social Change, 58(2), 155–165.
    Chang, P.-T., Huang, L.-C., & Lin, H.-J. (2000). The fuzzy Delphi method via fuzzy statistics and membership function fitting and an application to the human resources. Fuzzy Sets and Systems, 112(3), 511-520. doi: 10.1016/s0165-0114(98)00067-0
    Chen, J. K., & Chen, I. S. (2010). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications, 37(3), 1981-1990. doi: 10.1016/j.eswa.2009.06.079
    Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467.
    DeLone, W. H., & McLean, E. R. (1992). Information Systems Success: The Quest for the Dependent Variable. Information Systems Research, 3(1), 60-95.
    DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 19(4), 9-30.
    Deyermenjian, K. (2013). PSTN vs. VoIP: What's best for your business? , from http://searchunifiedcommunications.techtarget.com/feature/PSTN-vs-VoIP-Whats-best-for-your-business
    Gabus, A., & Fontela, E. (1972). World Problems, an Invitation to Further Thought Within the Framework of DEMATEL. Geneva, Switzerland: Batelle Geneva Research Center.
    Gagliardi, A. R., Fung, M. F., Langer, B., Stern, H., & Brown, A. D. (2005). Development of ovarian cancer surgery quality indicators using a modified Delphi approach. Gynecol Oncol, 97(2), 446-456. doi: 10.1016/j.ygyno.2004.12.059
    Gemmill, J. (2005). Network basics for telemedicine. Journal of Telemedicine and Telecare, 11(2), 71-76.
    Gibb, F., & Buchanan, S. (1998). The Information Audit: An Integrated Strategic Approach. International Journal of Information Management, 18(1), 29-47.
    Goodhue, D. L. (1995). Understanding User Evaluations of Information Systems. Management Science, 42(12), 1827-1844.
    Goodhue, D. L. (1998). Development and Measurement Validity of a Task-Technology Fit Instrument for User Evaluations of Information System. Decision Sciences, 29(1), 105-138.
    Goodhue, D. L., & Thompson, R. L. (1995). Task-technology Fit and Individual Performance. MIS Quarterly, 19(2), 213-236.
    Hamdi, M., Verscheure, O., & Hubaux, J.-P. (1999). Voice service interworking for PSTN and IP networks. IEEE COMMUNICATIONS MAGAZINE, 37(5), 104-111.
    Hosokawa, M., & Zweig, S. (1990). Future directions in family medicine: Results of a delphi survey. Family Medicine, 22(6), 429–433.
    Huang, C.-Y., & Shyu, J. Z. (2006). Developing E-commerce business models for enabling silicon intellectual property transactions. International Journal of Information Technology and Management, 5(2-3), 114-133.
    Huang, C.-Y., Shyu, J. Z., & Tzeng, G.-H. (2007). Reconfiguring the innovation policy portfolios for Taiwan's SIP Mall industry. Technovation, 27(12), 744-765. doi: 10.1016/j.technovation.2007.04.002
    Huang, C.-Y., Tzeng, G.-H., & Ho, W.-R. J. (2011). System on chip design service e-business value maximization through a novel MCDM framework. Expert Systems with Applications, 38(7), 7947-7962. doi: 10.1016/j.eswa.2010.12.022
    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2005). Multidimensional data in multidimensional scaling using the analytic network process. Pattern Recognition Letters, 26(6), 755-767. doi: 10.1016/j.patrec.2004.09.027
    Jiang, J. J., Klein, G., & Carr, C. L. (2002). Measuring information system service quality: SERVQUAL from the other side. MIS Quarterly, 26(2), 145-166.
    Jones, J., & Hunter, D. (1995). Qualitative research: Consensus methods for medical and health services research. British Medical Journal, 311(5), 376-380.
    Kenneth, C. L., & Jane, P. L. (2012). Management Information Systems: Managing the Digital Firm (9 ed.): Prentice Hall.
    Kremer, G. E. O., & Akman, G. (2013). A Tool for Product Development Performance Monitoring (PDPM) for Alignment with Competitive Priorities. International Journal of Information Technology & Decision Making, 12(6), 1333-1360. doi: 10.1142/s0219622013500399
    Listanti, M., Eramo, V., & Sabella, R. (2000). Architectural and technological issues for future optical Internet networks. IEEE Communications Magezine, 38(9), 82-92.
    Liu, C.-H., Tzeng, G.-H., & Lee, M.-H. (2012). Improving tourism policy implementation – The use of hybrid MCDM models. Tourism Management, 33(2), 413-426. doi: 10.1016/j.tourman.2011.05.002
    McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508. doi: 10.1016/j.compedu.2008.10.002
    Murry, J. W. J., & Hammons, J. O. (1995). Delphi: a versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423–436.
    Peng, G. C. A., & Nunes, M. B. (2007). Using PEST Analysis as a Tool for Refining and Focusing Contexts for Information Systems Research. Paper presented at the 6th European Conference on Research Methodology for Business and Management Studies, UK.
    Petter, S., DeLone, W., & McLean, E. (2008). Measuring information systems success: models, dimensions, measures, and interrelationships. European Journal of Information Systems, 17(3), 236-263. doi: 10.1057/ejis.2008.15
    Phillips-Wren, G., Jain, L. C., Nakamatsu, K., & Howlett, R. J. (2010). Advances in Intelligent Decision Technologies: Proceedings of the Second Kes International Symposium Idt 2010: Springer.
    Pishvaee, M. S., Fathi, M., & Jolai, F. (2008). A fuzzy clustering-based method for scenario analysis in strategic planning: The case of an asian pharmaceutical company. South African Journal of Business Management, 39(3), 21-32.
    Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service quality: a measure of information systems effectiveness. MIS Quarterly, 19(2), 173-187.
    Porter, M. E. (1985). Competitive Advantage: Creating and Sustaining Superior Performance. New York: The Free Press.
    Ringland, G. (1998). Scenario Planning: Managing for the Future. England: John Wiley & Sons.
    Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation: McGraw-Hill International Book Co.
    Saaty, T. L. (1996). Decision Making with Dependence and Feedback: The Analytic Network Process. Pittsburgh: RWS Publication.
    Saaty, T. L. (1999). Fundamentals of the analytic network process. Paper presented at the Proceedings of International Symposium on Analytical Hierarchy Process, Kobe, Japan.
    Saaty, T. L. (2005). Theory and Applications of the Analytic Network Process - Decision Making with Benefits, Opportunities, Costs, and Risks. Pittsburg: RWS Publications.
    Sabella, R., & Lovanna, P. (2006). Self-adaptation in Next-Generation Internet networks: How to react to traffic changes while respecting QoS? IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 36(6), 1218-1229.
    Seddon, P. B. (1997). A respecification and extension of the DeLone and McLean model of IS success. Information Systems Research, 8(3), 240-253.
    Smith, C. D., & Mentzer, J. T. (2010). Forecasting task-technology fit: The influence of individuals, systems and procedures on forecast performance. International Journal of Forecasting, 26(1), 144-161. doi: 10.1016/j.ijforecast.2009.05.014
    Tamura, M., Nagata, H., & Akazawa, K. (2002). Extraction and systems analysis of factors that prevent safety and security by structural models. Paper presented at the Proceedings of the 41st SICE Annual Conference, Osaka, Japan.
    Ting, C.-W., Huang, J.-W., Wang, D.-S., & Tzeng, G.-H. (2013). To identify or not to identify: A weighted multidimensional scaling in identifying the similarities of e-shopping stores African Journal of Business Management, 7(22), 2206-2218.
    Urban, G. L. (1988). Lead user analyses for the development of new industrial products. Management Science, 34(5), 569.
    Von Hippel, E., & Hippel, v. (1986). Lead users: a source of novel product concepts. Management Science, 32(7), 791.
    Ward, D., & Rivani, E. (2005). An Overview of Strategy Development Models and the Ward-Rivani Model. Economics Working Papers, 4, 9-11,14-18.

    無法下載圖示 本全文未授權公開
    QR CODE