簡易檢索 / 詳目顯示

研究生: 潘彥亨
Yen-Heng Pan
論文名稱: 延遲性肌肉酸痛後不同強度運動對自行車經濟性及生理反應的影響
Effects of Different Intensity of Exercise after DOMS on Cycling Economy and Physiological Responses
指導教授: 林正常
Lin, Jung-Charng
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 63
中文關鍵詞: 延遲性肌肉酸痛肌肉損傷不同強度運動
英文關鍵詞: delayed onset muscle soreness, DOMS, different intensities of exercise
論文種類: 學術論文
相關次數: 點閱:219下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究的主要目的在探討延遲性肌肉酸痛 (delayed onset muscle soreness, DOMS) 後從事4天不同強度的運動(40% 和60% VO2 peak,60 rpm),對自行車運動經濟性及生理反應的影響。方法:本研究以16名大學體育相關科系男學生為受試對象(年齡:23 ± 0.5歲;身高:174.1 ± 1.3公分;體重:68.5 ± 1.5公斤;VO2 peak:44.9 ± 1.4 ml/kg/min)。受試者先以原地自行車測功儀進行最大攝氧峰值及自行車運動經濟性測驗,再將受試者隨機分派至A40組(40% VO2 peak,60 rpm,n=8)和A60組(60% VO2 peak,60 rpm,n=8)。之後進行躍下跳 (drop jump) 200次(20次×10組,組與組間休息60秒),讓受試者股四頭肌作離心收縮運動,誘發雙腳股四頭肌延遲性肌肉酸痛。在誘發後的第2 - 5天,各組每天分別在原地自行車測功儀上進行30分鐘不同強度的自行車運動。各組在誘發DOMS前、誘發後第0-6天每天進行肌肉酸痛、最大自主收縮肌力(MVC)的測量;在誘發DOMS前、誘發後第2、4、6天抽血檢驗血液肌酸激酶(CK)、乳酸脫氫酶 (LDH) 活性及進行自行車運動經濟性測驗。所得資料以混合設計二因子變異數分析法進行統計處理,當變異數分析達到差異顯著水準時,再進一步使用杜凱氏法(Tukey’s)進行事後比較。本研究的顯著水準定為α= .05。結果:在誘發DOMS後0 -6天,A40組和A60組兩組間的MVC、肌肉酸痛恢復情形無顯著差異,只在時間因子上達顯著差異 (p<.05)。在誘發DOMS後第2、4、6天,兩組間的血液肌酸激酶(CK)、乳酸脫氫酶 (LDH) 活性及自行車運動經濟性等指標,在各時間點上均無顯著差異,只在時間因子上達顯著差異 (p<.05)。結論:1.在DOMS產生之後,以40% VO2 peak的強度或60% VO2 peak的強度運動對於最大自主收縮肌力的恢復是沒有顯著差異的。2. 在DOMS產生之後以40% VO2 peak的強度或60% VO2 peak的強度運動,對自行車運動經濟性及運動經濟性測驗中的換氣量、心跳率、血液乳酸濃度等生理反應的恢復是沒有顯著差異的。

    Purpose: The purpose of this study was to investigate the effect of a 4-day different intensity of exercise (40% and 60%VO2peak, 60 rpm) after delayed onset muscle soreness (DOMS) on cycling economy and physiological responses. Methods: Sixteen male physical education students participated in this study (age: 23 ± 0.5 years; height: 174.1 ± 1.3cm; weight: 68.5 ± 1.5 kg; VO2 peak: 44.9 ± 1.4 ml/kg/min). Subjects took the VO2 peak and cycling economy test first. Then they were randomly assigned into two groups: A40 (40%VO2 peak, 60rpm, n=8 ) and A60 (60%VO2 peak, 60rpm, n=8). An exercise protocol consisting of 200 drop jumps (20 repetitions × 10 sets) was used to elicit DOMS. 30-min of cycling exercises with different intensity were performed from 2ed day to 5th day to compare muscle soreness, maximal voluntary contraction strength (MVC), creatine kinase (CK) and lactate dehydrogenase (LDH) activity and cycling economy responses after drop jump. Result: No significant difference between two groups in MVC, muscle soreness, CK, LDH activities and cycling economy (p> .05) was observed. Conclusions: 1. There is no significant difference between 40%VO2 peak and 60%VO2 peak of exercise on MVC recovery after DOMS; 2. There is no significant difference between 40%VO2 peak and 60%VO2 peak of exercise on cycling economy recovery after DOMS.

    目 次 中文摘要………………….…………………………………………... Ⅰ 英文摘要………………….……………………...…………….……... Ⅱ 謝誌………………………….……………………………………....... Ⅲ 目次….…………………….……………..…………………………… Ⅳ 表次….…………………….…………. ……………………………… Ⅶ 圖次……………………….…………. …….………………………… Ⅷ 第壹章 緒論……………………….………………………………… 1 一、前言………………………...….…………………………….. 1 二、問題背景………………………...….……………………….. 2 三、研究目的……………………...….....……………………….. 4 四、研究假設…………………………………………………...... 4 五、名詞操作性定義………………………….…………………. 4 六、研究限制……………………...….....……………………….. 6 七、研究之重要性………………………..…………………….... 6 第貳章 文獻探討……………………….……….…………………. 7 一、誘發DOMS的理論與機制...........………………………….. 7 二、DOMS對運動表現的影響...……..…..….………………….. 9 三、肌肉損傷後繼續運動對肌肉恢復的影響…………………….. 11 四、本章總結……………………………………..…….…..…..... 15 第參章 研究方法與步驟……………………….…..…………… 16 一、受試對象……………………………….……………............. 16 二、實驗時間與地點……………………….………....……......... 16 三、實驗步驟…………………………………………………….. 16 四、實驗工具與測驗方法....…………………….…………….… 17 五、測試變項………………………………………….........……. 19 六、資料處理與統計分析……………………….…………….… 20 第肆章 結果………………………...…..…………………………… 22 一、受試者基本資料………………………….……………..…... 22 二、最大自主收縮肌力……………….…………..……............... 22 三、肌肉酸痛指數………………………….…………….……… 24 四、血液中CK、LDH活性值…….……………………............. 25 五、自行車運動經濟性.…............……………………........……. 28 第伍章 討論與結論……………...…..……………………………. 35 一、最大自主收縮肌力…………………………......…………… 35 二、肌肉酸痛指數………………………….…………….……… 36 三、血液中CK、LDH活性值…….……………………............. 37 四、自行車運動經濟性.…............……………………........……. 38 五、結論………………………………….………………………. 42 六、建議………………………………….………………………. 42 引用文獻……………..…..……………………………………………. 43 一、中文部分 43 二、英文部分 44 附錄一 受試者健康情況調查表……………………………………. 51 附錄二 受試者須知及參與同意書…………………………………. 52 附錄三 不同組別與時間點之MVC變異數分析摘要表………..… 56 附錄四 不同組別與時間點之MVC單純主要效果分析摘要表.…. 56 附錄五 不同組別與時間點之肌肉酸痛指數 變異數分析摘要表………………………………………….. 57 附錄六 不同組別與時間點之肌肉酸痛指數 單純主要效果分析摘要表………………………………….. 57 附錄七 不同組別與時間點之CK活性值之變異數分析摘要表…… 58 附錄八 不同組別與時間點之CK活性值 單純主要效果分析摘要表………………………………….. 58 附錄九 不同組別與時間點之LDH活性值變異數分析摘要表..…... 59 附錄十 不同組別與時間點之LDH活性值 單純主要效果分析摘要表………………………………….. 59 附錄十一 不同組別與時間點在自行車運動經濟性中攝氧量 變異數分析摘要表..…..…………………………………. 60 附錄十二 不同組別與時間點在自行車運動經濟性中攝氧量 單純主要效果分析摘要表………………………….…… 60 附錄十三 不同組別與時間點在自行車運動經濟性中心跳率 變異數分析摘要表………………………………….…… 61 附錄十四 不同組別與時間點在自行車運動經濟性中心跳率 單純主要效果分析摘要表………………………….……. 61 附錄十五 不同組別與時間點在自行車運動經濟性中換氣量 變異數分析摘要表………………………………….…… 62 附錄十六 不同組別與時間點在自行車運動經濟性中換氣量 單純主要效果分析摘要表………………………….…… 62 附錄十七 不同組別與時間點在自行車運動經濟性中 血液乳酸濃度變異數分析摘要表……………………… 63 附錄十八 不同組別與時間點在自行車運動經濟性中 血液乳酸濃度單純主要效果分析摘要表………….…… 63 表 次 表一 各變項測驗時間…….……………………..……….....………. 17 表二 受試者基本資料表………………………..………………….. 22 表三 A40組和A60組在不同時間之最大自主收縮肌力………..... 23 表四 A40組和A60組在不同時間之肌肉酸痛指數……..……… 25 表五 A40組和A60組在不同時間之CK活性值…………..….… 26 表六 A40組和A60組在不同時間之LDH活性值………………. 27 表七 A40組和A60組在不同時間之攝氧量…………….……..… 29 表八 A40組和A60組在不同時間之心跳率.………….…….…… 30 表九 A40組和A60組在不同時間之換氣量…………….……….. 32 表十 A40組和A60組在不同時間之血液乳酸濃度……………... 33 圖 次 圖一 實驗流程圖……………….….……………………….….…… 21 圖二 兩組受試者在不同時間點中最大自主收縮肌力 的變化情形……………….….……………………….….…… 24 圖三 兩組受試者在不同時間點中肌肉酸痛指數 的變化情形...…………….….……………………….….…… 25 圖四 兩組受試者在不同時間點中CK活性值 的變化情形……………………….….………………………. 27 圖五 兩組受試者在不同時間點中LDH活性值 的變化情形….………………….….…………………………. 28 圖六 兩組受試者在運動經濟性測驗中不同時間點之攝氧量 的變化情形……………….….……………………….…….… 29 圖七 兩組受試者在運動經濟性測驗中不同時間點之心跳率 的變化情形……………….….……………………….…….… 31 圖八 兩組受試者在運動經濟性測驗中不同時間點之換氣量 的變化情形……………….….……………………….…….… 32 圖九 兩組受試者在運動經濟性測驗中不同時間點之血液乳酸濃度的變化情形…………….….……………………….…….… 34

    二、 英文部分
    Ashe, M. C., Scroop, G. C., Frisken, P.I., Amery, C. A., Wilkins M. A., & Khan, K. M. (2003). Body position affects performance in untrained cyclists. Journal of Sports Medicine. 37, 441-444.

    Asp, S., Daugaard, J. R., & Richter, E. A. (1995). Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. Journal of Physiology, 482, 705–712.

    Asp, S., Daugaard, J. R., Kristiansen, S., Kiens, B., & Richter, E. A. (1998). Exercise metabolism in human skeletal muscle exposed to prior eccentric exercise. Journal of Physiology, 509, 305–313.

    Armstrong, R. B. (1984). Mechanisms of exercise-induced delay onset of muscular soreness: a brief review. Medicine & Science in Sports & Exercise, 16, 529-538.

    Barash, I. A., Peter, D., Fridén, J., Lutz, G. L., & Lieber, R. L. (2002). Desmin cytoskeletal modifications after a bout of eccentric exercise in the rat. American Journal of Physiology, 283, R958-R963.

    Braun, W. A., & Dutto, D. J. (2003). The effect of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48h later. European Journal of Applied Physiology, 90, 29-34.
    Brockett, C. L., Morgan, D. L., & Proske, U. (2001). Human hamstring muscles adapt to eccentric exercise by changing optimum length. Medicine & Science in Sports & Exercise, 33, 783-790.

    Byrne, W. C., Clarkson, P.M., White, J. S., Hsieh, S. S., & Fryman, P. N. (1985). Delayed onset muscle soreness following repeated bouts of downhill running. Journal of Applied Physiology, 59, 710-715.

    Byrne, C., & Eston, R. (2002). The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance. Journal of Sports Sciences, 20, 417-425.

    Cheung, K., Hume, P. A., & Maxwell, L. (2003). Delayed onset muscle soreness: Treatment strategies and performance factors. Sports Medicine, 33(2), 145-164.

    Clarkson, P. M., Nosaka, K., & Braun, B. (1992). Muscle function after exercise-induced muscle damage and rapid adaptation. Medicine & Science in Sports & Exercise, 24, 512-520.

    Clarkson , P. M. & Sayers, S. P. (1999). Etiology of exercise-induced muscle damage. Canadian Journal of Applied Physiology, 24, 234-248.

    Coyle, E. F., Martin III, W. H., Sinacore, D. R., Loyner, J. M., Hagberg, J. M., & Holloszy, J. O. (1984). Time course of loss of adaptations after stopping prolonged intense endurance training. Journal of Applied Physiology:Respiratory, Environmental and Exercise Physiology, 57, 1857-1864.

    Donnelly, A. E., Clarkson, P. M., & Maughan, R. J. (1992). Exercise-induced muscle damage: effect of light exercise on damaged muscle. European Journal of Applied Physiology, 64, 350-353.

    Fridén, J., Sjostrom, M., & Ekblom, B. (1983). Myofibrillar damage following intense eccentric exercise in man. International Journal of Sports Medicine, 4, 170-176.

    Glesson, M., Blannin, A. K., & Zhu, B. (1995). Cardiorespiratory, hormonal and haematological responses to submaximal cycling performed 2 days after eccentric or concentric exercise bouts. Journal of Sports Science, 13, 471-479.

    Gleeson, M., Blannin, A. K., Walsh, N. P., Field, C. N. E., & Pritchard, J. C. (1998). Effect of exercise-induced muscle damage on the blood lactate response to incremental exercise in humans. European Journal of Applied Physiology, 77, 292–295.

    Gulick, D. T., & Kimura, I. F. (1996). Delayed onset muscle soreness: What is it and how do we treat it? Journal of Sport Rehabilitation, 5, 234-243.

    Hamill, J., Freedson, P. S., Clarkson, P. M., & Braun, B. (1991). Muscle soreness during running: biomechanical and physiological considerations. International Journal of Sports Biomechanism, 7, 125–137.

    Hortobágyi, T., Barrier, J., Beard, D., Braspennincx, J., Koens, P., Devita, P., Dempsey, L., & Lambert, N. J. (1996a). Greater initial adaptations to submaximal muscle lengthening than maximal shortening. Journal of Applied Physiology, 81, 1677-1682.

    Hortobágyi, T., Hill, J. P., Houmard, J. A., Fraser, D. D., Lambert, N. J., Israel, R. G. (1996b). Adaptive responses to muscle lengthening and shortening in humans. Journal of Applied Physiology, 80, 765-772.

    Komi, P. V., & Buskirk, E. R. (1972). Effect of eccentric and concentric conditioning on tension and electrical activity of human muscle. Ergonomics, 15, 417-434.

    Lee, H., Goldfarb, A. H., Rescino, M. H., Hedge, S., Patrick, S., & Apperson, K. (2002). Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Medicine & Science in Sports & Exercise, 34, 443-448.

    MacIntyre,D. L., Reid, W. D., Lyster, D. M., Szasz, I. J., & McKenzie, D. C. (1996). Presence of WBC, decreased strength, and delayed soreness in muscle after eccentric exercise. Journal of Applied Physiology, 80, 1006-1013.

    Madsen, K., Pedersen, P. K. Djurhus, M. S. & Klitgaurd, N. S. (1993). Effect of detraining on endurance capacity and metabolic change during prolonged exhaustive exercise. Journal of Applied Physiology, 75(4), 1444-1451.

    Margaritis, I., Tessier, F., Verdera, F., Bermon, S., & Marconnet, P. (1999). Muscle enzyme release does not predict muscle function impairment after triathlon. The Journal of Sports Medicine & Physical Fitness, 39, 133-139.

    McHugh, M. P., Connolly, D. A. J., Eston, R. G., Kremenic, I. J., & Gleim, G. W. (1999). Exercise- induced muscle damage and potential mechanisms for the repeated bout effect. Sports Medicines, 27, 157-170.

    McHugh, M. P. (2003). Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scandinavian Journal of Medicine & Science in Sports, 13, 88-97.

    Newham, D. J., McPhail, G., Milla, K. R., & Edward, R. H. T. (1983). Ultrastructural changes after concentric and eccentric contractions of human muscle. Journal of Neurological Science, 61, 109-122.

    Nosaka, K., & Clarkson, P. M. (1995). Muscle damage following repeated bouts of high force eccentric exercise. Medicine & Science in Sports & Exercise, 27, 1263-1269.
    Nosaka, K., & Newton, M. (2002). Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Medicine & Science in Sports & Exercise, 34, 63-69.

    Reich, T. E., Lindstedt, S. L., LaStayo, P. C., & Pierotti, D. J. (2000). Is the spring quality of muscle plastic? American Journal of Physiology, 278, R1661-R1666.

    Rowlands, A. V., Eston, R. G., & Tilzey, C. (2001). Effect of stride length manipulation on symptoms of exercise-induced muscle damage and the repeated bout effect. Journal of Sports Sciences, 19, 333-340.

    Saunders, P. U., Pyne, D. B., Telford, R. D., & Hawley, J. A. (2004). Factors affecting running economy in trained distance runner. Sports Medicine, 34(7), 465-485.

    Sayers, S. P., Clarkson, P. M., & Lee, J. (2000). Activity and immobilization after eccentric exercise: I. Recovery of muscle function. Medicine & Science in Sports & Exercise, 32(9), 1587-1592.

    Schwane, J. A., Johnson, S. R., Vandenkker, C. B., & Armstorng, R. B. (1983). Delayed-onset musclar soreness and plasma CPK and LDH activities after dowmhill running. Medicine & Science in Sports & Exercise, 15(1), 51-56.

    Semark, A., Noakes, T. D., Clair Gibson, A. St., & Lambert, M. I. (1999). The effect of a prophylactic dose of flurbiprofen on muscle soreness and sprinting performance in trained subjects. Journal of Sports Science, 17, 197–203.

    Twist, C., & Eston, R. (2005). The effects of exercise-induced muscle damage on maximal intensity intermittent exercise performance. European Journal of Applied Physiology, 94, 652-658.

    QR CODE