研究生: |
謝章亭 Chang-Ting Hsieh |
---|---|
論文名稱: |
骨骼肌細胞中神經醯胺影響胰島素訊息傳遞之機轉 Mechanisms of Decreased Insulin Signaling by Ceramides in Skeletal Muscle Cells |
指導教授: |
林炎壽
Lin, Yenshou |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2011 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 肌肉細胞 、胰島素不敏感 、C2-神經醯胺 |
英文關鍵詞: | C2C12 myocytes, insulin resistance, C2-ceramide |
論文種類: | 學術論文 |
相關次數: | 點閱:283 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥胖是引發胰島素不敏感以及第二型糖尿病的高度危險因子, 而目前已經被證實,當血液中脂肪酸的濃度提高時會造成胰島素所誘導的葡萄糖吸收能力受到阻斷。神經醯胺 (ceramide),為一脂肪酸的衍生物,會透過降低AKT/protein kinase B (PKB)和 glycogen synthase kinase-3 (GSK3)活性而影響胰島素的訊息傳遞,然而神經醯胺對於上游分子,例如IRS1以及PI3K則沒有影響。本研究目的主要是進一步探討神經醯胺在胰島素訊息傳遞的詳細作用機轉。胰島素刺激的C2C12肌肉細胞中,100 μM C2-神經醯胺會造成AKT在絲胺酸473 (Serine 473)位點磷酸化程度降低,這一點同文獻所報導。另一方面,在訊息傳遞的上游分子中,例如IRS1在酪胺酸 (Tyrosine)位點磷酸化程度以及IRS1總蛋白表現量上則沒有太大的影響。而在同樣的處理條件中,我們發現S6K的磷酸化程度卻有顯著的增加。我們利用mTORC1的抑制劑Rapamycin處理,進一步證實C2-神經醯胺所造成AKT在絲胺酸473 (serine 473)位點磷酸化程度降低和增加的S6K的磷酸化可能有因果關係。所以根據目前已建立的胰島素訊息傳遞模式中,S6K上游分子如TSC1/TSC2,Rheb,mTORC1均有可能為C2-神經醯胺的直接作用標的。我們利用shRNA減少這些蛋白質在細胞中的表現以進一步檢測C2-神經醯胺對於胰島素訊息傳遞破壞作用是否因此受到影響,發現在C2C12肌肉細胞中減弱了Rheb分子表現量時確實會對C2-神經醯胺所造成Akt473磷酸化程度下降的作用產生干擾,因此我們找出C2-神經醯胺的作用應該位於PI3K的下游,但Rheb分子/或上游。此一發現對於C2-神經醯胺在肌肉細胞所造成之胰島素不敏感的現象,可謂訂出了C2-神經醯胺的標的分子,而詳細的作用層級及其作用機轉將有助於藥物標的的開發。
Obesity is a high risk factor to develop insulin resistance and type II diabetes. Chronic elevation of free fatty acid levels in plasma has been found to be closely associated with impaired insulin-mediated glucose uptake. Ceramide, a fatty acid derived lipid, was confirmed as a negative regulator of insulin signaling pathway by reducing Akt/protein kinase B (PKB) and glycogen synthase kinase-3 (GSK3) activity. However, there are no effects on the upstream signaling molecules, such as IRS1 and PI3K. In this study, we intend to investigate the detail molecular mechanism of C2-ceramide on insulin signaling. We showed that 100 μM C2-ceramide caused a decrease of Akt Ser473 phosphorylation in insulin-stimulated C2C12 myotubes, which is in consistent with the results on the literatures. While, the phosphorylation of the upstream signaling molecules, IRS1 tyrosine residue, and IRS1 total abundance were not changed. Interestingly, an increased phosphorylation of S6K was observed in the same condition. Utilizing rapamycin, an mTORC1 inhibitor, we further demonstrated that the decreased Akt Ser473 phosphorylation might be mediated through the activated S6K. According to current model of insulin signaling pathway, the upstream molecules of S6K such as TSC1/2, Rheb and mTORC1 could have been the targets of C2-ceramide. Utilizing shRNA to individually knockdown these molecules in order to examine the effect of loss-of-function on C2-ceramide impaired insulin signaling pathway, we found that Rheb knockdown in C2C12 myoblasts can block the decreased Akt Ser473 phosphorylation induced by C2-ceramide. Taken together, we explored a possible novel pathway of C2-ceramide impaired insulin signaling through activated S6K to interfere with Akt Ser473 phosphorylation. The affected signaling molecules had also been pinpointed to upstream of Rheb but downstream of PI3K. Further investigation on mapping and detail mechanism will provide great therapeutically strategy on treatment of type II diabetes.
Blouin CM, Prado C, Takane KK, Lasnier F, Garcia-Ocana A, Ferre P, Dugail I, Hajduch E (2010) Plasma membrane subdomain compartmentalization contributes to distinct mechanisms of ceramide action on insulin signaling. Diabetes 59:600-610.
Bourbon NA, Yun J, Kester M (2000) Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem 275:35617-35623.
Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51:1938-1948.
Cai SL, Tee AR, Short JD, Bergeron JM, Kim J, Shen J, Guo R, Johnson CL, Kiguchi K, Walker CL (2006) Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. J Cell Biol 173:279-289.
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA (2003) A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 278:10297-10303.
Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523-15530.
Frias MA, Thoreen CC, Jaffe JD, Schroder W, Sculley T, Carr SA, Sabatini DM (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16:1865-1870.
Gan X, Wang J, Su B, Wu D (2011) Evidence for direct activation of mTORC2 kinase activity by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 286:10998-11002.
Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabrias G, Abad JL, Delgado A, Gomez-Munoz A (2010) Control of metabolism and signaling of simple bioactive sphingolipids: Implications in disease. Prog Lipid Res 49:316-334.
Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139-150.
Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, Barnett J, Leslie NR, Cheng S, Shepherd PR, Gout I, Downes CP, Lamb RF (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166:213-223.
Hodges AK, Li S, Maynard J, Parry L, Braverman R, Cheadle JP, DeClue JE, Sampson JR (2001) Pathological mutations in TSC1 and TSC2 disrupt the interaction between hamartin and tuberin. Hum Mol Genet 10:2899-2905.
Huang J, Dibble CC, Matsuzaki M, Manning BD (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28:4104-4115.
Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829-1834.
Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY, Huang Q, Qin J, Su B (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127:125-137.
Jacinto E, Loewith R, Schmidt A, Lin S, Ruegg MA, Hall A, Hall MN (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6:1122-1128.
JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A (2007) Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes 56:394-403.
Julien LA, Carriere A, Moreau J, Roux PP (2010) mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling. Mol Cell Biol 30:908-921.
Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010-1018.
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479-489.
Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J (2005) Rheb binds and regulates the mTOR kinase. Curr Biol 15:702-713.
Miyazaki M, McCarthy JJ, Esser KA (2010) Insulin like growth factor-1-induced phosphorylation and altered distribution of tuberous sclerosis complex (TSC)1/TSC2 in C2C12 myotubes. Febs J 277:2180-2191.
Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC (2007) Sphingolipids and cell death. Apoptosis 12:923-939.
Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38:1213-1217.
Peterson JM, Wang Y, Bryner RW, Williamson DL, Alway SE (2008) Bax signaling regulates palmitate-mediated apoptosis in C(2)C(12) myotubes. Am J Physiol Endocrinol Metab 295:E1307-1314.
Plank TL, Yeung RS, Henske EP (1998) Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. Cancer Res 58:4766-4770.
Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209-218.
Powell DJ, Hajduch E, Kular G, Hundal HS (2003) Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol 23:7794-7808.
Ragheb R, Shanab GM, Medhat AM, Seoudi DM, Adeli K, Fantus IG (2009) Free fatty acid-induced muscle insulin resistance and glucose uptake dysfunction: evidence for PKC activation and oxidative stress-activated signaling pathways. Biochem Biophys Res Commun 389:211-216.
Reaven GM (2003) Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab 88:2399-2403.
Resjo S, Goransson O, Harndahl L, Zolnierowicz S, Manganiello V, Degerman E (2002) Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 14:231-238.
Rizvi F, Heimann T, Herrnreiter A, O'Brien WJ (2011) Mitochondrial dysfunction links ceramide activated HRK expression and cell death. PLoS One 6:e18137.
Rosner M, Hengstschlager M (2008) Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 17:2934-2948.
Sarbassov DD, Ali SM, Kim DH, Guertin DA, Latek RR, Erdjument-Bromage H, Tempst P, Sabatini DM (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14:1296-1302.
Schmitz-Peiffer C, Craig DL, Biden TJ (1999) Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem 274:24202-24210.
Shah OJ, Hunter T (2006) Turnover of the active fraction of IRS1 involves raptor-mTOR- and S6K1-dependent serine phosphorylation in cell culture models of tuberous sclerosis. Mol Cell Biol 26:6425-6434.
Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14:1650-1656.
Stancevic B, Kolesnick R (2010) Ceramide-rich platforms in transmembrane signaling. FEBS Lett 584:1728-1740.
Turpin SM, Lancaster GI, Darby I, Febbraio MA, Watt MJ (2006) Apoptosis in skeletal muscle myotubes is induced by ceramides and is positively related to insulin resistance. Am J Physiol Endocrinol Metab 291:E1341-1350.
Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli S, Allegrini PR, Kozma SC, Auwerx J, Thomas G (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431:200-205.
van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J (2003) Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 369:199-211.
van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S, Lindhout D, van den Ouweland A, Halley D, Young J, Burley M, Jeremiah S, Woodward K, Nahmias J, Fox M, Ekong R, Osborne J, Wolfe J, Povey S, Snell RG, Cheadle JP, Jones AC, Tachataki M, Ravine D, Sampson JR, Reeve MP, Richardson P, Wilmer F, Munro C, Hawkins TL, Sepp T, Ali JB, Ward S, Green AJ, Yates JR, Kwiatkowska J, Henske EP, Short MP, Haines JH, Jozwiak S, Kwiatkowski DJ (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805-808.
van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A, Reuser A, Sampson J, Halley D, van der Sluijs P (1998) Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7:1053-1057.
Wang X, Rao RP, Kosakowska-Cholody T, Masood MA, Southon E, Zhang H, Berthet C, Nagashim K, Veenstra TK, Tessarollo L, Acharya U, Acharya JK (2009) Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J Cell Biol 184:143-158.
Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471-484.
Yang Q, Inoki K, Ikenoue T, Guan KL (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20:2820-2832.
Zha H, Aime-Sempe C, Sato T, Reed JC (1996) Proapoptotic protein Bax heterodimerizes with Bcl-2 and homodimerizes with Bax via a novel domain (BH3) distinct from BH1 and BH2. J Biol Chem 271:7440-7444.
Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578-581.