研究生: |
許敦傑 Ton-Chieh Hsu |
---|---|
論文名稱: |
TBP蛋白質在聚麩醯胺引起之神經退化性疾病上扮演的角色: 與轉錄失調之關聯 Role of TATA-box Binding Protein (TBP) in PolyQ Mediated Neurodegenerative Diseases: Implication of Transcription Dysfunction |
指導教授: |
蘇銘燦
Su, Ming-Tsan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 聚麩醯胺 、神經退化性疾病 、轉錄失調 |
英文關鍵詞: | TBP, PolyQ, Neurodegenerative Diseases, Transcription Dysfunction |
論文種類: | 學術論文 |
相關次數: | 點閱:119 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聚麩醯胺擴增所造成的神經退化性疾病是由於其致病基因的外引子不正常的CAG三核苷酸擴增導致。在細胞及分子的層次上,其致病機轉雖尚未完全釐清,但由近幾年的研究發現轉錄失調為這類疾病的主要原因之一,一般認為聚麩醯胺造成轉錄失調有兩種方式:1.干擾轉錄因子間的交互作用; 2. 把轉錄因子捕捉在包涵體中使其無法作用。TATA box binding protein (TBP)為細胞內重要的轉錄因子,當其胺基端聚麩醯胺擴增時會導致第十七型脊髓小腦共濟失調症 (SCA17)。本研究的主要目的即是利用第十七型脊髓小腦共濟失調症果蠅模式株,來探討異常聚麩醯胺擴增的TBP蛋白質與相關因子對病理症狀有何影響,並釐清TBP在聚麩醯胺擴增造成的神經退化性疾病所伴演的角色。我們研究發現TBP功能為果蠅發育所必需,當其功能缺失時果蠅無法孵化,降低TBP表現或將其功能在特定組織致默後會造成複眼感光細胞退化,運動行為缺陷及壽命減短等性狀,第十七型小腦萎縮症果蠅疾病模式的性狀也會因其功能的缺失而更加嚴重,相對地增加TBP的表現則能有效地改善上述退化及行為等性狀,顯見TBP功能的減少為第十七型脊髓小腦共濟失調症致病機轉的一環。此外由於研究指出High Mobility Group (HMG) 的蛋白質會抑制TBP的轉錄作用,我們也籍由HMG 的同源基因- HmgD來干擾TBP,當HmgD大量表現時果蠅複眼感光細胞確有退化的現象,SCA17果蠅模式動物在此背景下也會加劇其病徵。
Polyglutamine (polyQ) diseases are a specific group of hereditary neurodegenerative diseases caused by expansion of CAG trinucleotide repeats in the exon of the corresponding gene. The pathological mechanism underlying polyglutamine mediated neurodegenerative diseases has not been fully elucidated in cellular and molecular level. Recently advancement in unraveling the pathogenic mechanism of polyQ mediated neurodegenerative diseases has pointed that transcription dysregulation is one of the major factors that results in death of neurons. It is generally accepted that polyQ causes transcription dysfunction in two ways: 1. polyQ disrupts the normal interaction of transcription factor; 2. many transcription factors were sequestered in polyQ containing inclusions. TATA Box binding protein (TBP) is a general transcription factor that is required for transcription of all three types of RNA polymerases in cell. It has been reported that SCA17 has been attributed to the polyQ expansion at amino terminal of TBP. The major goal of my study is to study how the abnormal TBP leads to SCA17 pathogenesis using Drosophila as model system, and dissect the role of TBP in polyQ mediated neurodegenerative diseases. We have found that TBP is essential for early embryogenesis of Drosophila. Fly embryos can not hatch in the absence of TBP. Reducing the function of TBP in certain tissues by RNA interference causes various phenotypes, including degeneration of photoreceptor cells, defect in mobility and pre-mature death. And pathological phenotype of SCA17 is enhanced in the loss-of-function of TBP. Conversely, increasing the expression of TBP would alleviated abovementioned disorders, suggesting loss-of-function of TBP is involved in the pathogenesis of SCA17, In addition, previous study has show HMG binds to TBP and suppresses TBP mediated transcription. We have found ectopic HmgD causes retinal degeneration in fly. And co-expression of both mutant TBP and HmgD leads more severe defects.
Becher M.W., Kotzuk J.A., Sharp A.H., Davies S.W., Bates G.P., Price D.L., et al.(1998) Intranuclear neuronal inclusions in Huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis ; 4: 387–97.
Brand, A.H. and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401-415.
Brandt J., Bylsma F. W., Gross R., Stine O. C., Ranen N., Ross C. A. (1996). Trinucleotide repeat length and clinical progression in Huntington’s disease. Neurology 46: 527-531.
Canaple, L., M. Decoville, et al. (1997). "The Drosophila DSP1 gene encoding an HMG 1-like protein: genomic organization, evolutionary conservation and expression." Gene 184(2): 285-90.
Cumming, C.J. and Zoghbi, H.Y. (2000). Fourteen and counting: unraveling trinucleotide repeat diseases. Hum. Mol. Genet. 9:909-16.
Das, D. and W. M. Scovell (2001). "The binding interaction of HMG-1 with the TATA-binding protein/TATA complex." J Biol Chem 276(35): 32597-605.
Davies, S W., Turmaine, M., Cozens, B. A., Difiglia, M., Sharp, A. H., Ross, C. A., Scherzinger, E., Wanker, E. E., Mangirini, L., and Bates, G. P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537-548.
Decoville, M., E. Giacomello, et al. (2001). "DSP1, an HMG-like protein, is involved in the regulation of homeotic genes." Genetics 157(1): 237-44.
Duenas, A. M., R. Goold, et al. (2006). "Molecular pathogenesis of spinocerebellar ataxias." Brain 129(Pt 6): 1357-70.
Everett, C.M. and Wood, N.W. (2004). Trinucleotide repeats and neurodegenerative disease. Brain. 127:2385-2405.
Faber P.W., Barnes G.T., Srinidhi J., Chen J., Gusella J.F., MacDonald M.E. (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7: 1463–74. Gusella JF, MacDonald ME. Huntingtin: a single bait hooks many species. Curr Opin Neurobiol 1998; 8: 425 –30.
Fischbeck, K.H. (2001). Polygluamine expansion neurodegenerative disease. Brain Res. Bul. 56:161-163.
Gatchel, J.R., Zoghbi, H.Y. (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6: 743–755.
Gill, G., Tjian, R. (1992). Eukaryotic coactivators associated with the TATA box binding protein. Curr Opin Genet Dev 2:236-242.
Gusella J.F, and MacDonald M.E.(1998) Huntingtin: a single bait hooks many species. Curr Opin Neurobiol 8: 425–30
Gusella, J.F. and MacDonald, M.E. (2000). Molecular genetics: unmasking polyglutamine triggers in neurodegenerative disease. Nat. Rev. Neurosci. 1:109-115.
Hernandez, N. (1993).TBP, a universal eukaryotic transcription factor? Genes Dev. 7:1291-1308.
Hernandez, D., M. Hanson, et al. (2003). "Mutation at the SCA17 locus is not a common cause of parkinsonism." Parkinsonism Relat Disord 9(6): 317-20
Huang, C. C., P. W. Faber, et al. (1998). "Amyloid formation by mutant huntingtin: threshold, progressivity and recruitment of normal polyglutamine proteins." Somat Cell Mol Genet 24(4): 217-33.
Igarashi S., Tanno Y., Onodera O., Yamazaki M., Sato S., Ishikawa A., et al. (1992). Strong correlation between the number of CAG repeats in androgen receptor genes and clinical onset of features of spinal and bulbar muscular atrophy. Neurology 42:2300-2302.
Ikeda H., Yamaguchi M., Sugai S., Aze Y., Narumiya S. and Kakizuka A. (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13: 196-202.
Ikeuchi T., Koide R., Tanaka H., Onodera O., Igarashi S., Takahashi H., et al. (1995). Dentatorubral-pallidoluysian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann. Neurol. 37: 769-775.
Kalchman MA, Koide HB, McCutcheon K, Graham RK, Nichol K, Nishiyama K, et al. (1997) HIP1, a human homologue of S. cerevisiae Sla2p, interacts with membrane- associated huntingtin in the brain. Nat Genet 16: 44–53.
Kimmel B.E., Heberlein U., and Rubin G.M. (1990) The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Genes Dev. 4: 712-727.
Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., Tsuji, S. (1999). A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease. Hum Mol Genet 18:2047-2053.
Komure O., Sano A., Nishino N., Yamauchi N., Ueno S., Kondoh K., et al. (1995). DNA analysis in hereditary dentatorubral-pallidoluysian atrophy: correlation between CAG repeat length and phenotypic variation and the molecular basis of anticipation. Neurology 45:143-149.
Lee, Y. S. and R. W. Carthew (2003). "Making a better RNAi vector for Drosophila: use of intron spacers." Methods 30(4): 322-9.
Lehming, N., D. Thanos, et al. (1994). "An HMG-like protein that can switch a transcriptional activator to a repressor." Nature 371(6493): 175-9.
Lescure, A., Lutz, Y., Eberhard, D., Jacq, X., Krol, A., Grummt, I., Davidson, I., Chanbon, P., Tora, L. (1994). The N-terminal domain of the human TATA-binding protein plays a role in transcription from TATA-containing RNA polymerase II and III promoters. EMBO J13:1166-1175.
Li X.J., Li S.H., Sharp A.H., Nucifora F.C. Jr, Schilling G., Lanahan A., et al. (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378: 398–402.
Lunkes A, Mandel JL.(1998) A cellular model that recapitulates major pathogenic steps of Huntington’s disease. Hum Mol Genet; 7: 1355–61.
Lunkes A, Trottier Y, Fagart J, Schultz P, Zeder-Lutz G, Moras D, et al. (1999) Properties of polyglutamine expansion in vitro and in a cellular model for Huntington’s disease. Philos Trans R Soc Lond B Biol Sci; 354: 1013–9.
Mangiarini L., Sathasivam K., Seller M., Cozens B., Harper A., Hetherington C. et al. (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493-506.
McNeil S.M., Novelletto A., Srinidhi J., Barnes G., Kornbluth I., Altherr M. R., et al. (1997). Reduced penetrance of the Huntington’s disease mutation. Hum. Mol. Genet. 6:775-779.
Mosrin-Huaman, C., L. Canaple, et al. (1998). "DSP1 gene of Drosophila melanogaster encodes an HMG-domain protein that plays multiple roles in development." Dev Genet 23(4): 324-34.
Okazawa H. (2003) Polyglutamine diseases: a transcription disorder? Cell. Mol. Life Sci. 60:1427-1439.
Orr, H. T. (2001). Beyond the Qs in the polyglutamine diseases. Genes Dev. 15:925-932.
Perez, M. K., Paulson, H.L., Pendse, S.J., Saionz, S.J., Bonini, N.M., Pittman, R.N. (1998). Recruitment and the role of nuclear localization in polyglutamine-mediate aggregation. J Cell Biol 143:1457-1470.
Perutz M. F. (1999) Glutamine repeats and neurodegenerative diseases: molecular aspects. TIBS 24:58-63.
Ragab, A., E. C. Thompson, et al. (2006). "High mobility group proteins HMGD and HMGZ interact genetically with the Brahma chromatin remodeling complex in Drosophila." Genetics 172(2): 1069-78.
Reid, S.J., Rees, M.I., W. M. van Roon-Mom, Jones, A.L., MacDonald, M.E., Sutherland, G., During, M.J., Faull, R.L.M., Owen, M.J., Dragunow, M., and Snell, R.G. (2003). Molecular investigation of TBP allele length: a SCA17 cellular model and population study. Neurobiology of Disease 13: 37-45.
Reid, S. J., W. M. van Roon-Mom, et al. (2004). "TBP, a polyglutamine tract containing protein, accumulates in Alzheimer's disease." Brain Res Mol Brain Res 125(1-2): 120-8.
Roeder, R.G. (1991). The complexities o eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trend Biochem Sci 16:402-408.
Ross, C.A. (2002). Polyglutamine pathogenesis: emergence of unifying mechanism for Huntington’s disease and related disorders. Neuron 35:819-822.
Rubinsztein, D. C., Wyttenbach, A., and Rankin, J. (1999). Intracellular inclusions, pathological markers in diseases caused by expanded polyglutamine tracts? J Med Genet 36, 265-270.
Saudou F., Finkbeiner S., Devys D., Greenberg M.E.(1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell ; 95: 55–66.
Scherzinger E., Sittler A., Schweiger K., Heiser K., Lurz R., Hasenbank R. et al. (1999). Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implication for Huntington’s disease pathology. Proc. Natl. Acad. Sci. USA 96: 4604-4609.
Steffan J.S., Kazantsev A., Spasic-Boskovic O., Greenwald M., Zhu Y.Z., Gohler H., Wanker E.E., Bates G.P., Housman D.E., Thompson L.M.(2000) The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci U S A. Jun 6;97(12):6763-6768.
Sugars, K. L. and D. C. Rubinsztein (2003). "Transcriptional abnormalities in Huntington disease." Trends Genet 19(5): 233-8
Suhr, S. T., M. C. Senut, et al. (2001). "Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression." J Cell Biol 153(2): 283-94.
Sutrias-Grau, M., M. E. Bianchi, et al. (1999). "High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the pre-initiation complex." J Biol Chem 274(3): 1628-34.
Taylor, J.P., Tanaka, F., Robitschek J., Sandoval C.M., Taye, A., Markovic-Plese, S., and Fischbeck, K.H.(2003) Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Human Molecular Genetics 12(7): 749-757.
Tenharmsel, A., Biggina, M.D. (1995). Bending DNA can repress a eukaryotic basal promoter and inhibit TFIID binding. Mol Cell Biol 15:5492-5498.
Todd, Amy M., and Brian E. Staveley (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Technique Notes. DIS 87: 101-107.
Trottier Y., Biancalana V., Mandel J.L. (1994). Instability of CAG repeats in Huntington’s disease: relation to parental transmission and age of onset. J. Med. Genet. 31: 377-382.
Uchihara, T., Fujigasaki, H., Koyano, S., Nakamura, A., Yagishita, S., Iwabuchi, K. (2001). Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias: triple-labeling immunofluorescence study. Acta Neuropathol 102:149-152.
van Roon-Mom W.M.C., Reid, S.J., Jones, A.L., MacDonald, M.E., Faull, R.L.M., Snell, R.G. (2002).Insoluble TATA-binding protein accumulation in Huntington’s disease cortex. Mol Brain Res 109:1-10.
Zhou, Q., Berk, A. J. (1995). The yeast TATA-binding protein (TBP) core domain assembles with human TBP-associated factors into a functional TFIID complex. Mol Cell Biol 15:534-539.
Zhou, Q., Boyer, T. G., Berk, A. J. (1993). Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev 7:180-187.
Zoghbi, H.Y., and Orr, H.T. (2000). Glumatine repeats and neurodegeneration. Annu. Rev. Neurosci. 23:217-247.