簡易檢索 / 詳目顯示

研究生: 張家熏
論文名稱: 基於K-means 演算法、小波轉換及支持向量機之心電訊號辨識系統
An Arrhythmia Recognition System Based on K-means Clustering、Wavelet Transform and Support Vector Machine
指導教授: 吳順德
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 心電訊號辨識系統k-means演算法小波轉換支持向量機
英文關鍵詞: Arrhythmia classification system, k-mean clustering, Wavelet Transform, support vector machine
論文種類: 學術論文
相關次數: 點閱:208下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用小波轉換(Wavelet transform) 、K-means分群法(K-means clustering)及支持向量機(Support vector machine)等方法,建立一個辨識各種心律不整的心電辨識系統。本論文所提的方法可以大致區分為三個階段;第一階段使用K-means分群法把屬於同一類別但相異性卻很大的心律不整訊號分成數個次類別,在每一個次類別,各樣本會有較高的相似性。第二階段則把各次類別裡的每一個心搏樣本利用小波轉換擷取時頻特徵向量。第三階段以每一個心搏樣本的時頻特徵以及形態特徵為訓練資料,並運用支持向量機來建立本辨識系統的模型。為了驗證本系統的有效性以及可靠性,本論文利用MIT-BIH心律不整資料庫進行了三個實驗。實驗的結果本論文所提的方法具有相當高的辨識率達98.2%,最後與各相關辨識系統文獻比較差異。

    This paper described an arrhythmia classification system based on the technologies of wavelet transform, k means clustering and support vector machine for the purpose of heartbeat recognition. The method consists of three stages. At the first stage, the waveform of a single heartbeat in each main group is classified into subgroups using k-means clustering technology. At the second stage, the time-frequency features of each heartbeat were extracted by using wavelet transform. At the third stage, the model of the proposed classification system is obtained by using support vector machine (SVM). The training vector of SVM is the combinations of morphological features and time-frequency features extracted using wavelet transform. Three experiments were done to examine the performance and reliability of the proposed classification system. Experiments show that the efficiency and feasibility of this proposed classification system.

    第一章 緒論 ................................................................................................................... 8 1.1前言 ............................................................................................................................. 8 1.2 研究動機與目的 ...................................................................................................... 8 1.3 論文架構 ................................................................................................................. 10 第二章 心電圖概論及相關研究探討 ........................................................................ 11 2.1 心電圖介紹 ............................................................................................................. 11 2.2 心電圖十二導程 .................................................................................................... 12 2.3 心電圖PQRST型態及判讀 ................................................................................ 16 2.4 MIT-BIH心律不整資料庫 ................................................................................... 18 2.5 心電訊號相關的干擾 ........................................................................................... 26 第三章 系統架構、心電圖辨識演算法及相關分析理論 ........................................ 29 3.1 心電圖辨識系統流程簡介 ................................................................................... 29 3.2 零相位延遲高通濾波器 ....................................................................................... 32 3.3 Segmentation(訊號切割) .................................................................................... 34 3.4 K-means演算法分類器 ..................................................................................... 37 3.5 小波轉換演算法 .................................................................................................. 44 3.6 心電圖訊號之特徵值擷取 ................................................................................ 46 3.7 支持向量機簡介 .................................................................................................. 50 3.8 最佳化特徵擷取 .................................................................................................. 53 3.8 心電圖病症辨識 .................................................................................................. 56 第四章 實驗結果......................................................................................................... 58 4.1 心電圖訊號辨識結果 ......................................................................................... 58 4.2 本論文與相關文獻比較 ..................................................................................... 61 參考文獻 ....................................................................................................................... 63

    [1] 中華民國行政院衛生署國民健局 “98年度死因完整統計表”.
    [2] D. Gorinevsky and S. Boyd, “Optimization-Based Design and Implementation of Multidimensional Zero-Phase IIR Filters,” IEE Transactions on Circuits and Systems. Vol. 53, NO.2, February 2006.
    [3] H. Elci, R. W. Longman, M. Q. Phan, J. Juang and R. Ugoletti, “Simple Learning Control Made Practical by Zero-Phase Filtering: Applications to Robotics,” IEEE Transactions on Circuits and Systems. Vol. 49, NO. 6, June 2002.
    [4] A. V. Gribok, M. J. Buller, W. Hoyt and J. Reifman, “A Real-Time Algorithm for Predicting Core Temperature in Humans,” IEEE Transactions on Information Technology In Biomedicine.Vol. 14, NO. 4, July 2010.
    [5] D. Romero, M. Ringborn, P. Laguna, S. Member, O. Pahlm and E. Pueyo, “Depolarization Changes During Acute Myocardial Ischemia by Evaluation of QRS Slopes: Standard Lead and Vectorial Approach,” IEEE Transactions on Biomedical Engineering, Vol. 58, NO. 1, January 2011.
    [6] S. Kadambe, R. Murray and G. Faye, “Wavelet Transform-Based QRS Complex Detector,” Transactions on Biomedical Engineering, Vol. 46, NO. 7, July 1999.
    [7] P. Ravier, F. Leclerc, C. Dumez and G. Lamarque, “Redefining Performance Evaluation Tools for Real-Time QRS Complex Classification Systems,” IEEE Trans ,Vol. 54, NO. 9, September 2007.
    [8] M. Ferras, C. Leung, C. Barras and J. Gauvain, “Comparison of Speaker Adaptation Methods as Feature Extraction for SVM-Based Speaker Recognition,” IEEE Trans Vol. 18, NO. 6, August 2010.
    [9] C. Huai, K. Aik and H. Li, “An SVM Kernel With GMM-Super Vector Based on the Bhattacharyya Distance for Speaker Recognition,” IEEE Signal Processing Letters, Vol. 16, NO. 1, January 2009.
    [10] 呂嘉陞譯, “心電圖學必備,” 合記圖書出版社,原著:S. Thaler “The Only EKG Book You’ll Ever Need” ,2001.
    [11] 黃天守, 陳清輝譯, “基本心電圖判讀,” 眾文圖書公司,原著:D. Davis, How to Quickly and Accurately Master ECG Interpretation,1997.
    [12] 邱國元,「十二導程心電圖機研製」,國立交通大學,碩士論文,民國96年9月.
    [13] 王宛, “臨床心電圖學,” 人民衛生出版社,2005年4月.
    [14] 方柏仁, “實用心電圖學,” 藝軒圖書出版社,2008年5月.
    [15] http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm
    [16] G. B. Moody and R. G. Mark, “The Impact of the MIT-BIH Arrhythmia Database,” IEEE Engineering in Medicine and Biology Magazine, Vol.20, No.3, pp.45-50, May-June, 2001.
    [17] R. Mark and G. Moody, “MIT-BIH Arrhythmia Database Directory,” Cambridge, MIT, 1988.
    [18] C. W. Li, C. G. Zeng and C. F. Tai, “Detection of ECG Characteristic Points Using Wavelet Transform,” IEEE Trans. Biomedical Engineering, Vol.42, No.1, pp.21-28, January 1995.
    [19] H. A. Dinh, D. K. Kumar, N. D. Pah and P. Burton, “Wavelet for QRS Detection,” in Proc. 23rd Annual EMBS International Conference, pp.1883-1887, 2001.
    [20] 呂嘉陞,林建宇,邱顯邦, “臨床實證指引,” 合記出版社,2006年6月.
    [21] J. Lee, K. Jeong, J. Yoon and M. Lee, “A Simple Real-time QRS Detection Algorithm,” in Proc. 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol.4, pp.1396-1398, Nov. 1996.
    [22] W. C. Kao, C. K. Yu, W. H. Chen, C. P. Shen and Y. W. Hung, “Automatic Electrocardiogram Recognition by Wavelet Transform and Support Vector Machine,” 2005 CACS Automatic Control Conference, Taiwan, Nov., 2005.
    [23] J. Z. Xiao and Li Xiao, “A Research of the Partition Clustering Algorithm,” International Symposium on Intelligence Information Processing and Trusted Computing , 2010.
    [24] 沈家平,「心電圖訊號分析演算法與硬體架構設計」,國立台灣師範大學,碩士論文,民96。
    [25] N. Acir, “Classification of ECG Beats by Using a Fast Last Square Support Vector Machines with a Dynamic Programming Feature Selection Algorithm,” Neural Comput, Vol.14, pp. 299–309. 2005.
    [26] M. Afrif, M. U. Akram and F. A. Afsar, “ Arrhythmia Beat Classification Using Pruned Fuzzy K-nearest Neighbor Classifier Soft Computing and Pattern Recognition,”SOCPAR’09, pp.37-42, 2009.
    [27] I. Daubechies, “The Wavelet Transform, Time Frequency Localization and Signal Analysis,” IEEE Trans. Information Theory, Vol. 36, No. 5, pp.961-1005, Sep. 1990.
    [28] S. G. Mallat, “A Theory For Multiresolution Signal Decomposition: The Wavelet Representation,” IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11, No. 7, pp. 674–693, July. 1989.
    [29] T. Stamkopoulos, K. Diamantaras, N. Maglaveras and M. Strintzis, “ECG analysis using nonlinear PCA neural networks for ischemia detection,” IEEE Trans. Signal Processing, vol. 46. no. 11, pp. 3058-3067, Nov. 1998.
    [30] N. Sivannarayana and D. C. Reddy, “Biorthogonal Wavelet Transforms For ECG Parameters Estimation,” Medical Engineering & Physics, Vol. 21, No. 3, pp. 167-174, April. 1999.
    [31] 楊岳穎,「以適應性特徵擷取及改進支持向量檢測心電圖心律不整」,國立台灣師範大學,碩士論文,民99。
    [32] 徐士宜,「基於經驗模態分解法與零相位延遲濾波器之心電圖雜訊濾除法則」,國立台灣師範大學,碩士論文,民99。
    [33] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image Coding Using Wavelet Transform,” IEEE Trans. Image Processing, Vol. 1, pp. 205-220, Apr. 1992.
    [34] I. Güler and E. Übeyli, “Application of Adaptive Neuro-fuzzy Inference System for Detection of Electrocardiographic Change in Patients with Partial Epilepsy Using Feature Extraction,” Expert Systems with Application, Vol. 27, pp. 323-330, 2004.
    [35] N. Sivannarayana and D. C. Reddy, “Biorthogonal Wavelet Transforms for ECG Parameters Estimation,” Med. Eng. Phy. Vol.21, pp.167-174, 1999.

    下載圖示
    QR CODE