研究生: |
吳瓔晃 |
---|---|
論文名稱: |
在一受損之超立方體系統上藉由不完整超立方體模型尋找環狀路徑 On Finding a Ring in an Injured Hypercube Using the Incomplete Hypercube Model |
指導教授: | 葉耀明 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
畢業學年度: | 82 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 超立方體系統 、環狀路徑 |
論文種類: | 學術論文 |
相關次數: | 點閱:154 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在一任意圖形上尋找漢米頓迴路(或環)是--NP - complete的問題,但是在一有高度對稱性、平行性之拓撲結構--完整超立方體上,尋找漢米頓迴路這一問題能夠在複雜度O(N)之時間解決。N是超立方體節點的數目。假如在一有錯誤節點產生之完整超立方體系統上,則上述O(N)的演算法無法在其上面找一環路徑。因此,我們研究的目的是在一有錯誤節點產生的完整超立方體上,尋找一個能容下大多數健康節點的環。我們推出一新的不完整超立方體模型--subcube - graph。這個模型是由損壞的完整超立方體所得出。藉由這個模型,我們發展出一演算法。演算法應用深度優先搜尋法則於subcube - graph,以求出這個模型的擴展樹。藉由擴展樹分別求出每一樹節點之環路徑,再藉著我們的破邊法連結每一樹節點之環路徑。如此,在原來損壞的超立方體上,可容納大多數健康節點的環便可求出。我們的方法不受限於錯誤節點數目的多寡,這個限制常困擾許多現有的環嵌入演算方法。
It is well known that the general problem of finding a Hamilton cycle (ring) in an arbitary graph is NP - complete. However, in an - dimensional hypercube, an advocated symmetric topological structure, the searching of a Hamilton cycle (ring) can be easily carried out in O (N), where N is the number of nodes in a complete hypercube. In an injured hypercube which has faulty nodes, the above O (N) algorithrn can't be applied for finding a ring in it. Hence, the purpose of our research is to develop a heuristic algorithm to find rings in the injured hypercubes. In this thesis, we develop a new incomplete hypercube model, which uses a subcbe - graph to present the topology of an injured hypercube, to provide a better representation for it. This incomplete hypercube model server as the foundation for our ring embeding algorithm. Our ring embedding algorthm employs depth - first search on subcube - graph associated with a heuristic break edge method to derive a ring passing through the maximal possible number of the available processor elements in the injured hypercube. Our method can provide a ring embedding on an injured hypercube with high processor utilization. Also, our method has no limitation on the number of faulty nodes that bothers many existing fault - tolerant ring embedding schemes. The time complexity of our method is O (mn), where m is the number of cube - nodes in a subcube - graph and n is the dimension of the injured hypercube.