研究生: |
張榕宸 Chang, Jung-Chen |
---|---|
論文名稱: |
古氣候因果關係的交互式視覺分析系統 Interactive Visual Analytics System for Paleoclimate Causality |
指導教授: |
王科植
Wang, Ko-Chih |
口試委員: |
賀耀華
Ho, Yao-Hua 曾琬鈴 Tseng, Wan-Ling 王懌琪 Wang, Yi-Chi 王科植 Wang, Ko-Chih |
口試日期: | 2023/07/31 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 氣候數據分析 、古代氣候 、關聯規則學習 、交互式可視化分析 |
英文關鍵詞: | Climate Data Analysis, Ancient Climate, Association Rule Learning, Interactive visualization Analysis |
研究方法: | 主題分析 、 觀察研究 、 現象分析 |
DOI URL: | http://doi.org/10.6345/NTNU202301514 |
論文種類: | 學術論文 |
相關次數: | 點閱:85 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候數據可以提供有價值的信息來了解我們的環境。 探索和識別不同氣候事件之間的關係是氣候分析的一項重要任務。 特別是在研究古代氣候數據時,這是許多氣象學家非常感興趣的話題。 認識古代氣候事件的關係並弄清楚它們之間的關係可以幫助氣象學家重建歷史氣候,甚至預測未來的氣候。 在本研究中,我們基於REACHES(重建東亞氣候歷史編碼系列)數據集設計了一個交互式可視化系統。 為了幫助專家探索明清兩代跨越600年的關聯事件,並找出他們可能感興趣的事件的關係。我們使用關聯規則學習來計算不同氣候事件之間的關係,並找出其中意想不到的關係具體的時間和空間。
Climate data can provide valuable information to understand our environment. Exploring and identifying the relation between different climate events is a crucial task in climate analysis. Particularly when studying ancient climate data, which is a topic of great interest to many meteorologists. Realizing ancient climate events’ relation and figuring out their relation can help meteorologists to reconstruct the historical climate, and even predict the future’s climate. In this study, we design an interactive visualization system base on the REACHES (Reconstructed East Asian Climate Historical Encoded Series) dataset. To help experts explore the relation events over the Ming and Qing dynasties spanning 600 years, and find out which event’s relation they may be interested in. We used association rule learning to calculate the relation between different climate events, and find out an unexpected relation in specific time and space.
[1] Rakesh Agrawal, Tomasz Imieli´nski, and Arun Swami. Mining association rules
between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data, pages 207–216, 1993.
[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499. Santiago, Chile, 1994.
[3] Tarique Anwar, Chengfei Liu, Hai L. Vu, Md. Saiful Islam, and Timos Sellis. Capturing the spatiotemporal evolution in road traffic networks. IEEE Transactions on Knowledge and Data Engineering, 30(8):1426–1439, 2018.
[4] Agustin Garcia Asuero, Ana Sayago, and AG Gonz´alez. The correlation coefficient: An overview. Critical reviews in analytical chemistry, 36(1):41–59, 2006. [5] Nadine Aubry, R´egis Guyonnet, and Ricardo Lima. Spatiotemporal analysis of complex signals: theory and applications. Journal of Statistical Physics, 64:683– 739, 1991.
[6] Rudolf Br´azdil, Petr Dobrovoln`y, Miroslav Trnka, Ladislava Rezn´ıˇckov´a, Luk´aˇs ˇ Dol´ak, and Oldˇrich Kotyza. Extreme droughts and human responses to them: the czech lands in the pre-instrumental period. Climate of the Past, 15(1):1–24, 2019.
[7] Rudolf Br´azdil, Andrea Kiss, J¨urg Luterbacher, David J Nash, and Ladislava Rezn´ıˇckov´a. Documentary data and the study of past droughts: a global state ˇ of the art. Climate of the Past, 14(12):1915–1960, 2018.
[8] Stefan Br¨onnimann, Olivia Martius, Christian Rohr, David N Bresch, and KuanHui Elaine Lin. Historical weather data for climate risk assessment. Annals of the New York Academy of Sciences, 1436(1):121–137, 2019.
[9] Hendrik J Bruins. Ancient desert agriculture in the negev and climate-zone boundary changes during average, wet and drought years. Journal of Arid Environments, 86:28–42, 2012.
[10] Andrew J Challinor, James Watson, David B Lobell, SM Howden, DR Smith, and Netra Chhetri. A meta-analysis of crop yield under climate change and adaptation. Nature climate change, 4(4):287–291, 2014.
[11] Andrew Hall and Gregory V Jones. Spatial analysis of climate in winegrapegrowing regions in australia. Australian Journal of Grape and Wine Research, 16(3):389–404, 2010.
[12] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate generation. ACM sigmod record, 29(2):1–12, 2000.
[13] J Hansen, Mki Sato, R Ruedy, P Kharecha, A Lacis, R Miller, L Nazarenko, K Lo, GA Schmidt, G Russell, et al. Climate simulations for 1880–2003 with giss modele. Climate dynamics, 29:661–696, 2007.
[14] Zhixin Hao, Jingyun Zheng, Xuezhen Zhang, Haolong Liu, Mingqi Li, and Quansheng Ge. Spatial patterns of precipitation anomalies in eastern china during centennial cold and warm periods of the past 2000 years. International Journal of Climatology, 36(1):467–475, 2016.
[15] Bo Huang, Li Zhang, and Bo Wu. Spatiotemporal analysis of rural–urban land conversion. International Journal of Geographical Information Science, 23(3):379–398, 2009.
[16] Branko Kavˇsek and Nada Lavraˇc. Apriori-sd: Adapting association rule learning to subgroup discovery. Applied Artificial Intelligence, 20(7):543–583, 2006.
[17] K.-H. E. Lin, P. K. Wang, P.-L. Pai, Y.-S. Lin, and C.-W. Wang. Historical droughts in the qing dynasty (1644–1911) of china. Climate of the Past, 16(3):911–931, 2020. [18] Kam-biu Liu, Caiming Shen, and Kin-sheun Louie. A 1,000-year history of typhoon landfalls in guangdong, southern china, reconstructed from chinese historical documentary records. Annals of the Association of American Geographers, 91(3):453–464, 2001.
[19] Andrew N Mackintosh, Brian M Anderson, and Raymond T Pierrehumbert. Reconstructing climate from glaciers. Annual Review of Earth and Planetary Sciences, 45:649–680, 2017.
[20] Son T. Mai, Ha T. Phi, Abdullahi Abubakar, Peter Kilpatrick, Hung Q. V. Nguyen, and Hans Vandierendonck. Dengue fever: From extreme climates to outbreak prediction. In 2022 IEEE International Conference on Data Mining (ICDM), pages 1083–1088, 2022.
[21] Max A Moritz. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology, 84(2):351–361, 2003.
[22] BM Patil, RC Joshi, and Durga Toshniwal. Association rule for classification of type-2 diabetic patients. In 2010 second international conference on machine learning and computing, pages 330–334. IEEE, 2010.
[23] Qing Pei, Harry F Lee, David D Zhang, and Jie Fei. Climate change, state capacity and nomad–agriculturalist conflicts in chinese history. Quaternary International, 508:36–42, 2019.
[24] Gregory Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. Knowledge Discovery in Data-bases, pages 229–248, 1991.
[25] Garry L Schaefer, Michael H Cosh, and Thomas J Jackson. The usda natural resources conservation service soil climate analysis network (scan). Journal of Atmospheric and Oceanic Technology, 24(12):2073–2077, 2007.
[26] Fritz H Schweingruber and Keith R Briffa. Tree-ring density networks for climate reconstruction. In Climatic variations and forcing mechanisms of the last 2000 years, pages 43–66. Springer, 1996.
[27] Julia Slingo and Tim Palmer. Uncertainty in weather and climate prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1956):4751–4767, 2011.
[28] Wenting Song and Xin Ma. Research on climate prediction based on deep learning. In 2021 3rd International Symposium on Smart and Healthy Cities (ISHC), pages 107–109, 2021.
[29] PH Tan and HM Liao. Reconstruction of temperature, precipitation and weather characteristics over the yangtze river delta area in ming dynasty. J. Geogr. Sci, 57:61–87, 2012.
[30] Richard Taylor. Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1):35–39, 1990.
[31] Huidong Tian, Leif C Stige, Bernard Cazelles, Kyrre Linne Kausrud, Rune Svarverud, Nils C Stenseth, and Zhibin Zhang. Reconstruction of a 1,910-y-long locust series reveals consistent associations with climate fluctuations in china. Proceedings of the National Academy of Sciences, 108(35):14521–14526, 2011.
[32] RT Vassoler and GF Zebende. Dcca cross-correlation coefficient apply in time series of air temperature and air relative humidity. Physica A: Statistical Mechanics and its Applications, 391(7):2438–2443, 2012.
[33] Gang-Jin Wang, Chi Xie, Shou Chen, Jiao-Jiao Yang, and Ming-Yan Yang. Random matrix theory analysis of cross-correlations in the us stock market: Evidence from pearson’s correlation coefficient and detrended cross-correlation coefficient. Physica A: statistical mechanics and its applications, 392(17):3715–3730, 2013.
[34] Hong Wang, Yafeng Lu, Shade T. Shutters, Michael Steptoe, Feng Wang, Steven Landis, and Ross Maciejewski. A visual analytics framework for spatiotemporal trade network analysis. IEEE Transactions on Visualization and Computer Graphics, 25(1):331–341, 2019.
[35] Masahiro Watanabe, Tatsuo Suzuki, Ryouta O’ishi, Yoshiki Komuro, Shingo Watanabe, Seita Emori, Toshihiko Takemura, Minoru Chikira, Tomoo Ogura, Miho Sekiguchi, et al. Improved climate simulation by miroc5: mean states, variability, and climate sensitivity. Journal of Climate, 23(23):6312–6335, 2010.