簡易檢索 / 詳目顯示

研究生: 黃鴻霖
Hong-Lin Huang
論文名稱: r-凸函數在二階錐和n維實數空間上的一些結果
Some Results on r-convex Functions Associated With Second-Order Cone and R^n
指導教授: 陳界山
Chen, Jein-Shan
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 23
中文關鍵詞: 二階錐凸函數單調函數頻譜分解擬凸函數
英文關鍵詞: Second-order cone, convex function, monotone function, spectral decomposition, quasiconvex function
論文種類: 學術論文
相關次數: 點閱:194下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Martos和Avriel獨立的定義一群實數函數,稱為r-凸函數,而且Avriel更進一步的研究它們。擬凸函數包含它們,而且它們包含凸函數。本篇論文給一些r-凸函數的例子,以及延伸r-凸函數和擬凸函數的概念到二階錐上。

    A family of real functions, called $r$-convex functions, were independently defined by Martos and Avriel and studied by the latter author. This family properly includes the family of convex functions and is included in the family of quasiconvex functions. This paper gives some examples of $r$-convex functions, extends the r-convexity and quasi-convexity concepts to the second-order cone.

    1 Introduction 1 2 Preliminary 1 3 SOC-functions 8 4 SOC-r-convex Functions 13 5 SOC-Quasi-Convex Functions 18 6 References 22

    [1] J.S. Aujla and H.L. Vasudeva, Convex and monotone operator functions, Annales Polonici Mathematici, vol. 62, pp. 1-11, 1995.
    [2] M. Avriel, r-Convex Functions, Math. Program., Vol.2, pp.309-323, 1972.
    [3] M. Avriel, Solution of Certain Nonlinear Programs Involving r-Convex Functions, J. Optim. Theory
    Appl., Vol. 11, No. 2, pp.159-174, 1973.
    [4] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming, John Wiley and Sons, 3rd
    edition, 2006.
    [5] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
    [6] R. Bhatia and K.P. Parthasarathy, Positive definite functions and operator inequalities, Bulletin
    of London Mathematics Society, vol. 32, pp. 214-228, 2000.
    [7] J.-S. Chen, Xin Chen, P. Tseng, Analysis of nonsmooth vector-valued functions associated with
    second-order cones, Mathematical Programming, vol. 101, pp. 95-117, 2004.
    [8] J.-S. Chen, The convex and monotone functions associated with second-order cone, Optimization,
    vol. 55, pp. 363-385, 2006.
    [9] J.-S. Chen, Xin Chen, S. Pan, Jiawei Zhang, Some characterizations for SOC-monotone and SOCconvex functions, J. Glob Optim., vol. 45, pp. 259-279, 2009.
    [10] J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs(New
    York: Oxford University Press), 1994.
    [11] Masao Fukushima, Zhi-Quan Luo, Paul Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM J. Optim., vol. 12, No. 2, pp. 436-460, 2002.
    [12] E. Galewska, M. Galewski, r-Convex Transformability in Nonlinear Programming Problems, Comment. Math. Univ. Carol., Vol.46, pp.555-565, 2005.
    [13] G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities(Cambridge University Press, 1967).
    [14] R.A. Horn and C.R. Johnson, Matrix Analysis(Cambridge: Cambridge University Press, 1985).
    [15] A. Klinger, O.L. Mangasarian, Logarithmic Convexity and geometric programming, J. Math. Anal.
    Appl., vol. 24, pp. 388-408, 1968.
    [16] A. Korányi, Monotone functions on formally real Jordan algebras, Mathematische Annalen, vol.
    269, pp. 73-76, 1984.
    [17] B. Martos, The Power of Nonlinear Programming Methods(In Hungarian), MTA
    Közgazdaságtudományi Intézetének Közleményei, No. 20, Budapest, Hungary, 1966.
    [18] R.N. Mukherjee, L.V. Keddy, Semicontinuity and Quasiconvex Functions, J. Optim. Theory Appl.,
    Vol.94, pp.715-720, 1997.
    [19] J. Ponstein, Seven Kinds of Convexity, SIAM Review, Vol. 9, No. 1, 1967.
    [20] D. Sun and J. Sun, Semismooth matrix valued functions, Mathematics on Operation Research, 27,
    150-169, 2002.
    [21] P. Tseng, Merit function for semidefinite complementarity problems, Mathematical Programming,
    83, 159-185, 1998.
    [22] X.M. Yang, Convexity of Semicontinuous Functions, Oper. Res. Soc. India, Vol.31, pp.309-317,
    1994.
    [23] X.M. Yang, S.Y. Liu, Three kinds of Generalized Convexity, J. Optim. Theory Appl., Vol.86, pp.
    501-513, 1995.
    [24] Y.X. Zhao, S.Y. Wang, L. Coladas Uria, Characterizations of r-Convex Functions, J. Optim.
    Theory Appl., Vol. 145, pp.186-195, 2010.

    QR CODE