研究生: |
黃昱翔 Huang, Yu-Hsiang |
---|---|
論文名稱: |
1T-MoS2催化劑結合矽光電陰極應用於氮氣還原反應 1T-MoS2 Catalyst for Nitrogen Reduction to Ammonia via Si-Heterojunction Photocathode |
指導教授: |
陳家俊
Chen, Chia-Chun 陳俊維 Chen, Chun-Wei |
口試委員: |
陳俊維
Chen, Chun-Wei 郭聰榮 Kuo, Tsung-Rong 王迪彥 Wang, Di-Yan 陳家俊 Chen, Chia-Chun |
口試日期: | 2022/06/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 產氨 、二維材料 、二硫化鉬 、光電化學 |
英文關鍵詞: | Ammonia production, Two-dimensional materials (2D materials), Molybdenum disulfide (MoS2), Photoelectrochemical (PEC) |
研究方法: | 實驗設計法 、 次級資料分析 、 調查研究 、 主題分析 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202200821 |
論文種類: | 學術論文 |
相關次數: | 點閱:208 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1. Rosca, V., et al., Nitrogen cycle electrocatalysis. Chemical Reviews, 2009. 109(6): p. 2209-2244.
2. Foster, S.L., et al., Catalysts for nitrogen reduction to ammonia. Nature Catalysis, 2018. 1(7): p. 490-500.
3. Modak, J.M., Haber process for ammonia synthesis. Resonance, 2002. 7(9): p. 69-77.
4. Tang, C. and S.-Z. Qiao, How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chemical Society Reviews, 2019. 48(12): p. 3166-3180.
5. Hou, J., M. Yang, and J. Zhang, Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale, 2020. 12(13): p. 6900-6920.
6. Soloveichik, G., et al., Renewable energy to fuels through utilization of energy dense liquids (REFUEL). US DOE, 2016.
7. Wan, Y., J. Xu, and R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions. Materials Today, 2019. 27: p. 69-90.
8. Lv, J., et al., Interface and defect engineer of titanium dioxide supported palladium or platinum for tuning the activity and selectivity of electrocatalytic nitrogen reduction reaction. Journal of colloid and interface science, 2019. 553: p. 126-135.
9. Yang, T.-H., et al., Noble-metal nanoframes and their catalytic applications. Chemical Reviews, 2020. 121(2): p. 796-833.
10. Wang, H.-B., et al., Bionic design of a Mo (IV)-doped FeS2 catalyst for electroreduction of dinitrogen to ammonia. ACS Catalysis, 2020. 10(9): p. 4914-4921.
11. Jayakumar, A., A. Surendranath, and P. Mohanan, 2D materials for next generation healthcare applications. International journal of pharmaceutics, 2018. 551(1-2): p. 309-321.
12. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
13. Martincová, J., M. Otyepka, and P. Lazar, Oxidation of metallic two-dimensional transition metal dichalcogenides: 1T-MoS2 and 1T-TaS2. 2D Materials, 2020. 7(4): p. 045005.
14. Van Tamelen, E.E. and D.A. Seeley, Catalytic fixation of molecular nitrogen by electrolytic and chemical reduction. Journal of the American Chemical Society, 1969. 91(18): p. 5194-5194.
15. Yan, Z., et al., Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: one step closer to a sustainable energy future. Advanced Energy Materials, 2020. 10(11): p. 1902020.
16. Banerjee, A., et al., Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. Journal of the American Chemical Society, 2015. 137(5): p. 2030-2034.
17. Guo, C., et al., Rational design of electrocatalysts and photo (electro) catalysts for nitrogen reduction to ammonia (NH 3) under ambient conditions. Energy & Environmental Science, 2018. 11(1): p. 45-56.
18. Liu, D., et al., Photoelectrochemical synthesis of ammonia with black phosphorus. Advanced Functional Materials, 2020. 30(24): p. 2002731.
19. Patil, S.B., et al., Enhanced N 2 affinity of 1T-MoS 2 with a unique pseudo-six-membered ring consisting of N–Li–S–Mo–S–Mo for high ambient ammonia electrosynthesis performance. Journal of Materials Chemistry A, 2021. 9(2): p. 1230-1239.
20. Wang, K., D. Smith, and Y. Zheng, Electron-driven heterogeneous catalytic synthesis of ammonia: Current states and perspective. Carbon Resources Conversion, 2018. 1(1): p. 2-31.
21. Wang, H.-P., et al., High-performance a-Si/c-Si heterojunction photoelectrodes for photoelectrochemical oxygen and hydrogen evolution. Nano letters, 2015. 15(5): p. 2817-2824.
22. Cui, X., C. Tang, and Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 2018. 8(22): p. 1800369.
23. Medford, A.J., et al., From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 2015. 328: p. 36-42.
24. Li, S.J., et al., Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Advanced materials, 2017. 29(33): p. 1700001.
25. Wang, Z., et al., Ambient electrochemical synthesis of ammonia from nitrogen and water catalyzed by flower‐like gold microstructures. ChemSusChem, 2018. 11(19): p. 3480-3485.
26. Li, Z., et al., Fe-Pt nanoclusters modified Mott-Schottky photocatalysts for enhanced ammonia synthesis at ambient conditions. Applied Catalysis B: Environmental, 2020. 262: p. 118276.
27. Chang, C.C., et al., Photoactive earth‐abundant iron pyrite catalysts for electrocatalytic nitrogen reduction reaction. Small, 2019. 15(49): p. 1904723.
28. Pang, Y., et al., Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021.
29. Lai, C.-H., M.-Y. Lu, and L.-J. Chen, Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. Journal of Materials Chemistry, 2012. 22(1): p. 19-30.
30. Zhao, L., et al., Efficient N 2 reduction with the VS 2 electrocatalyst: identifying the active sites and unraveling the reaction pathway. Journal of Materials Chemistry A, 2021. 9(44): p. 24985-24992.
31. Zhang, J., et al., Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots. Nanoscale, 2020. 12(20): p. 10964-10971.
32. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
33. Backes, C., et al., Functionalization of liquid‐exfoliated two‐dimensional 2H‐MoS2. Angewandte Chemie International Edition, 2015. 54(9): p. 2638-2642.
34. Shi, J., et al., 3R MoS2 with broken inversion symmetry: a promising ultrathin nonlinear optical device. Advanced Materials, 2017. 29(30): p. 1701486.
35. Yu, Y., et al., High phase-purity 1T′-MoS2-and 1T′-MoSe2-layered crystals. Nature chemistry, 2018. 10(6): p. 638-643.
36. Zhang, J., et al., Cobalt-modulated molybdenum–dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. Journal of the American Chemical Society, 2019. 141(49): p. 19269-19275.
37. Tang, Q. and D.-e. Jiang, Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chemistry of Materials, 2015. 27(10): p. 3743-3748.
38. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
39. Minggu, L.J., W.R.W. Daud, and M.B. Kassim, An overview of photocells and photoreactors for photoelectrochemical water splitting. International journal of hydrogen energy, 2010. 35(11): p. 5233-5244.
40. Wang, B., et al., Highly efficient photoelectrochemical synthesis of ammonia using plasmon-enhanced black silicon under ambient conditions. ACS Applied Materials & Interfaces, 2020. 12(18): p. 20376-20382.
41. Wang, S.-C., F.-Q. Tang, and L.-Z. Wang, Visible light responsive metal oxide photoanodes for photoelectrochemical water splitting: a comprehensive review on rational materials design. Journal of Inorganic Materials, 2018.
42. Oh, I., J. Kye, and S. Hwang, Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. Nano letters, 2012. 12(1): p. 298-302.
43. Aziz, F. and A.F. Ismail, Spray coating methods for polymer solar cells fabrication: A review. Materials Science in Semiconductor Processing, 2015. 39: p. 416-425.
44. Li, Z., et al., Carbon-free, high-capacity and long cycle life 1D–2D NiMoO4 nanowires/metallic 1T MoS2 composite lithium-ion battery anodes. ACS Applied Materials & Interfaces, 2019. 11(47): p. 44593-44600.
45. Paganin, V., E. Ticianelli, and E. Gonzalez, Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996. 26(3): p. 297-304.
46. Kim, K.-H., et al., The effects of Nafion® ionomer content in PEMFC MEAs prepared by a catalyst-coated membrane (CCM) spraying method. International Journal of Hydrogen Energy, 2010. 35(5): p. 2119-2126.
47. Su, J., et al., Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano letters, 2011. 11(5): p. 1928-1933.
48. Mohammed, A. and A. Abdullah. Scanning electron microscopy (SEM): A review. in Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania. 2018.
49. Newbury, D.E. and N.W. Ritchie, Elemental mapping of microstructures by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS): extraordinary advances with the silicon drift detector (SDD). Journal of Analytical Atomic Spectrometry, 2013. 28(7): p. 973-988.
50. Shindo, D. and T. Oikawa, Energy dispersive x-ray spectroscopy, in Analytical electron microscopy for materials science. 2002, Springer. p. 81-102.
51. Stan, C.V., et al., X-ray diffraction under extreme conditions at the Advanced Light Source. Quantum Beam Science, 2018. 2(1): p. 4.
52. Rostron, P., S. Gaber, and D. Gaber, Raman spectroscopy, review. laser, 2016. 21: p. 24.
53. Penner, M.H., Ultraviolet, visible, and fluorescence spectroscopy, in Food analysis. 2017, Springer. p. 89-106.
54. Zhu, Y., et al., Development of analytical methods for ammonium determination in seawater over the last two decades. TrAC Trends in Analytical Chemistry, 2019. 119: p. 115627.
55. Xiang, T., et al., Vertical 1T-MoS 2 nanosheets with expanded interlayer spacing edged on a graphene frame for high rate lithium-ion batteries. Nanoscale, 2017. 9(21): p. 6975-6983.
56. Sandoval, S.J., et al., Raman study and lattice dynamics of single molecular layers of MoS 2. Physical Review B, 1991. 44(8): p. 3955.
57. Rong, J., et al., Restructuring electronic structure via W doped 1T MoS2 for enhancing hydrogen evolution reaction. Applied Surface Science, 2022. 579: p. 152216.
58. Huang, Y., et al., Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nature communications, 2019. 10(1): p. 1-11.