研究生: |
黃淑欣 Ng, Shu-Xin |
---|---|
論文名稱: |
以雲端同步雙層析儀進行揮發性有機氣體污染之連續分析田野調查與數據統計方法研究 A Field study and Statistical Data Analysis of VOC Pollution Employing Cloud-based Synchronized Dual µGCs |
指導教授: |
呂家榮
Lu, Chia-Jung |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 微型氣相層析儀 、即時連續分析 、揮發性有機化合物 、統計方法 、定位污染源 |
英文關鍵詞: | micro gas chromatograph, real-time analysis, volatile organic compound, statistical methods, locating emission source |
DOI URL: | https://doi.org/10.6345/NTNU202202883 |
論文種類: | 學術論文 |
相關次數: | 點閱:150 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以雲端同步應用兩台微型氣相層析儀(µGC)即時連續分析
16 天觀音樹林國小的揮發性有機化合物濃度,結合氣象資訊探討樹林
國小受觀音工業區污染的狀況,並採用不同統計方法及污染源計算方
法找出可能污染來源方向。所定量的化合物包含丙酮、乙酸甲酯、丁
酮、正己烷、苯、甲苯和二甲苯,濃度都在個位數到百位數 ppb 範圍。丙酮、乙酸甲酯和丁酮在 µGC-1 的濃度比 µGC-2 高,表示 µGC-1 比較靠近丙酮、乙酸甲酯和丁酮的排放來源;正己烷、苯、甲苯、二
甲苯的濃度是 µGC-2高於 µGC-1,表示 µGC-2 比較靠近正己烷、苯、
甲苯、二甲苯的排放來源。眾多氣象資訊裡以風向為主要影響化合物
濃度的氣象因素,兩台 µGC 的丁酮、正己烷、苯和甲苯主要源自於西
南方,二甲苯主要源自於西北方,兩台 µGC 的丙酮和乙酸甲酯的主要
來源都不同。本研究嘗試從不同的統計方法探討各化合物和各風向的
污染狀況,方法包含相關性分析、集群分析以及主成份分析。在相關
性分析裡,兩台 µGC 的丙酮和乙酸甲酯都呈低度相關;兩台 µGC 的
丁酮、正己烷、苯和二甲苯呈中度相關;兩台 µGC 的二甲苯呈高度相
關。至於集群分析,兩台 µGC 將化合物分為三群,分別為乙酸甲酯一
群、二甲苯一群以及丙酮、丁酮、正己烷、苯和甲苯一群。兩台 µGC
的化合物在主成份分析的結果稍微不同,從化合物的成分矩陣得知,兩台 µGC 的乙酸甲酯有來自西南風和西北風的貢獻;丁酮、正己烷、
苯和甲苯主要由西南風貢獻;二甲苯主要來自西北風的貢獻;µGC-1
的丙酮來自西南風的貢獻較高,µGC-2 的丙酮貢獻則跟西南風的貢獻
較低。除了統計,本研究亦採用污染源機率分佈方法計算各化合物的
高污染源機率方向,丙酮、乙酸甲酯、丁酮、正己烷、苯和甲苯在西
南和東南方都有污染源機率,只是西南方的機率較高,而且每個化合
物高機率的角度有所不同;二甲苯的污染最高機率來源是西北方。從
以上結果知道,本研究方法得以在短時間內得到大量數據作統計分析
以及計算污染源機率分佈得到不同化合物和風向的關係,這些結果可
作為後續空污管理的參考。
In this study, two µGCs are used to analyze VOCs concentrations real-time and continuously at a 15 minutes interval in a school adjacent to an industrial area located at northern Taiwan for 16 days. Meteorological data are also collected to know its impact on VOCs concentration. The key VOCs were acetone, methyl acetate, butanone, hexane, benzene, toluene and m/p-xylene by canister/GC-MS confirmation, their concentrations measured by μGC ranged from units digit to hundreds ppb. The concentration of acetone, methyl acetate and butanone were higher in µGC-1 than in µGC-2, which means µGC-1 was near to the pollution source of these VOCs. On the other hand, the concentration of hexane, benzene, toluene and m/p-xylene were higher in µGC-2 than in µGC-1, which means µGC-2 was near to the pollution source of these VOCs. Among the various meteorological information that we had, we observed the wind direction is the main determinants of VOC concentrations which pointed to the possible source of pollution. The direction of high concentration sources of each VOC can be determined from the pollution rose plots. Butanone, hexane, benzene and toluene were mainly came from southwestern direction in both µGCs, m/p-xylene were mainly came from northwestern direction in both µGCs. The main pollution source of acetone and methyl acetate were different in both µGCs, which indicates the sources of these VOCs may be varied. These observations can be presented and analyzed by statistical method in detail: correlation analysis, cluster analysis and principle component analysis. In correlation anaylsis, the correlation of acetone and methyl acetate in both µGCs were low, the other VOCs were high correlated in both µGCs. In cluster anaylsis, three cluster of VOCs are grouped for both µGCs with distance of eight: methyl acetate in one cluster, m/p-xylene in one cluster, the rest of the compounds in one cluster. However, the result of component plot of VOCs for both µGCs are different in principle component analysis. By refering the component score of 16 main wind directions, we can observe that the methyl acetate was contributed by both southwestern and northwestern wind in both µGCs; m/p-xylene was contributed by northwestern wind in both µGCs; butanone, hexane, benzene, toluene were contributed by southwestern wind in both µGCs; acetone was more contributed by southwestern wind in µGC-1 than µGC-2. Besides, probability distribution maps of emission source were drawn for each VOC to know the highest probability of emission source of different VOCs. For acetone, methyl acetate, butanone, hexane, benzene and toluene, the probability were found in both southwest and southeast, but the probability of southwest is higher than southeast. Although they were all having high pobability in southwest, but they have different specific degree in southwest. For m/p-xylene, the highest probability were found in northwest. In summary, this study reveals plenty of data can be collected in a short period of time which can apply them with statistical method and calculate the probability distribution in order to study the relationship between VOC and wind direction, these results can be used as a reference for air pollution management.
1. 歷年各季國內生產毛額依行業分. 2017: 行政院主計總處
2. 105年工廠校正及營運調查最終統計概況分析. 2017: 經濟部統計處
3. Volatile Organic Compounds in Consumer and Commercial Products. Available from: http://www.ec.gc.ca/cov-voc/.
4. Jian, R.-S., Huang, Y.-S., Lai, S.-L., Sung, L.-Y., and Lu, C.-J., Compact instrumentation of a μ-GC for real time analysis of sub-ppb VOC mixtures. Microchemical Journal, 2013. 108: p. 161-167.
5. Jian, R.-S., Sung, L.-Y., and Lu, C.-J., Measuring real-time concentration trends of individual VOC in an elementary school using a sub-ppb detection μGC and a single GC–MS analysis. Chemosphere, 2014. 99: p. 261-266.
6. Jian, R.-S., Wang, T.-Y., Song, L.-Y., Kuo, C.-Y., Tian, W.-C., Lo, E.-W., and Lu, C.-J., Field investigations and dynamic measurements of process activity induced VOCs inside a semiconductor cleanroom. Building and Environment, 2015. 94, Part 1: p. 287-295.
7. Sung, L.-Y., Shie, R.-H., and Lu, C.-J., Locating sources of hazardous gas emissions using dual pollution rose plots and open path Fourier transform infrared spectroscopy. Journal of Hazardous Materials, 2014. 265: p. 30-40.
8. 揮發性有機物空氣污染管制及排放標準. 2013: 行政院環境保護署.
9. Benitez, J., Process Engineering and Design for Air Pollution Control. 1992: PTR Prentice-Hall Inc., New Jersey. 466.
10. Atkinson, R., Gas-phase tropospheric chemistry of organic compounds: a review. Atmospheric Environment, 2007. 41: p. 200-240.
11. Kampa, M. and Castanas, E., Human health effects of air pollution. Environmental Pollution, 2008. 151(2): p. 362-367.
12. Jia, C., Batterman, S., and Godwin, C., VOCs in industrial, urban and suburban neighborhoods, Part 1: Indoor and outdoor concentrations, variation, and risk drivers. Atmospheric Environment, 2008. 42(9): p. 2083-2100.
13. Thepanondh, S., Varoonphan, J., Sarutichart, P., and Makkasap, T., Airborne Volatile Organic Compounds and Their Potential Health Impact on the Vicinity of Petrochemical Industrial Complex. Water, Air, & Soil Pollution, 2011. 214(1): p. 83-92.
14. 揮發性有害空氣污染物質健康影響. Available from: http://www.ksaqmc.com.tw/pollutioninfo/PK4.aspx.
15. Volatile Organic Compounds' Impact on Indoor Air Quality. Available from: https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality.
16. 固定污染源揮發性有機物(VOC)收費可行性及衝擊評估計劃. 2001, 行政院環境保護署.
17. 空氣及物理檢測方法. Available from: http://www.niea.gov.tw/analysis/method/ListMethod.asp?methodtype=AIR.
18. Toxic Organic Compendium. 1999; Available from: https://www3.epa.gov/ttnamti1/airtox.html.
19. Mazumdar, A.S.a.D., Monitoring and Reporting VOCs in Ambient Air, Air Quality Monitoring, Assessment and Management. 2011: Dr. Nicolas Mazzeo (Ed.),InTech.
20. Badjagbo, K., Sauvé, S., and Moore, S., Real-time continuous monitoring methods for airborne VOCs. TrAC Trends in Analytical Chemistry, 2007. 26(9): p. 931-940.
21. Lin, C., Liou, N., and Sun, E., Applications of Open-Path Fourier Transform Infrared for Identification of Volatile Organic Compound Pollution Sources and Characterization of Source Emission Behaviors. Journal of the Air & Waste Management Association, 2008. 58(6): p. 821-828.
22. Król, S., Zabiegała, B., and Namieśnik, J., Monitoring VOCs in atmospheric air I. On-line gas analyzers. TrAC Trends in Analytical Chemistry, 2010. 29(9): p. 1092-1100.
23. McGlenny, W.A., Pleil, J.D., Evans, G.F., Oliver, K.D., Holdren, M.W., and Winberry, W.T., Canister-Based Method for Monitoring Toxic VOCs in Ambient Air. Journal of the Air & Waste Management Association, 1991. 41(10): p. 1308-1318.
24. Woolfenden, E., Monitoring VOCs in Air Using Sorbent Tubes Followed by Thermal Desorption-Capillary GC Analysis: Summary of Data and Practical Guidelines. Journal of the Air & Waste Management Association, 1997. 47(1): p. 20-36.
25. Wu, C.-H., Feng, C.-T., Lo, Y.-S., Lin, T.-Y., and Lo, J.-G., Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Chemosphere, 2004. 56(1): p. 71-80.
26. Marć, M., Zabiegała, B., and Namieśnik, J., Mobile Systems (Portable, Handheld, Transportable) for Monitoring Air Pollution. Critical Reviews in Analytical Chemistry, 2012. 42(1): p. 2-15.
27. Terry, S.C., Jerman, J.H., and Angell, J.B., A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 1979. 26(12): p. 1880-1886.
28. Marć, M., Tobiszewski, M., Zabiegała, B., Guardia, M.d.l., and Namieśnik, J., Current air quality analytics and monitoring: A review. Analytica Chimica Acta, 2015. 853: p. 116-126.
29. Kim, S.K., Burris, D.R., Chang, H., Bryant-Genevier, J., and Zellers, E.T., Microfabricated Gas Chromatograph for On-Site Determination of Trichloroethylene in Indoor Air Arising from Vapor Intrusion. 1. Field Evaluation. Environmental Science & Technology, 2012. 46(11): p. 6065-6072.
30. Garg, A., Akbar, M., Vejerano, E., Narayanan, S., Nazhandali, L., Marr, L.C., and Agah, M., Zebra GC: A mini gas chromatography system for trace-level determination of hazardous air pollutants. Sensors and Actuators B: Chemical, 2015. 212: p. 145-154.
31. Nasreddine, R., Person, V., Serra, C.A., Schoemaecker, C., and Le Calvé, S., Portable novel micro-device for BTEX real-time monitoring: Assessment during a field campaign in a low consumption energy junior high school classroom. Atmospheric Environment, 2016. 126: p. 211-217.
32. Torion T-9 Portable GC/MS. 2012; Available from: http://www.perkinelmer.com/tw/product/torion-t-9-portable-gc-ms-instrument-ntsst090500.
33. 490 Micro GC. 2013; Available from: http://www.agilent.com/en-us/products/gas-chromatography/gc-systems/490-micro-gc.
34. FROG 4000. 2013; Available from: http://www.defiant-tech.com/frog-4000.php.
35. GC2-MINI. 2013; Available from: https://www.vernier.com/products/sensors/gc2-mini/.
36. GUARDION Portable Chemical Identifier. 2015; Available from: http://www.smithsdetection.com/index.php?option=com_k2&view=item&id=97&Itemid=101#.WUVBpWiGO00.
37. 李洪成, SPSS 19統計分析入門講座. 2010: 松崗資訊股份有限公司.
38. 墨爾原著,鄭惟厚翻譯, 統計,讓數字說話!. 1998: 天下遠見出版股份有限公司.
39. 陳正昌等, 多變量分析方法:統計軟體應用. 2003: 五南圖書出版股份有限公司.
40. 陳耀茂, 多變量分析導論. 2002: 全威圖書有限公司.
41. 邱瑞仙, 桃園地區空氣污染物濃度相關性及地理分佈. 2008, 國立中央大學環工所.
42. 林震岩, 多變量分析:SPSS的操作與應用=Multivariate analysis: SPSS operation and application. 2007: 智勝文化事業有限公司.
43. 經濟部工業局觀音工業區服務中心. Available from: http://www.moeaidb.gov.tw/iphw/kuangin/.
44. 台灣工業用地供給與服務資訊網. Available from: http://idbpark.moeaidb.gov.tw/Environ/More?id=270#ad-image-0.
45. 屏東縣工業區臭味物質監測及有害污染調查計畫. 2014: 行政院環境保護署.
46. Sharon S. Murnane, A.H.L., Patrick D. Owens, Odor Thresholds for Chemicals with Established Occupational Health Standards. Second ed. 2013: American Industrial Hygiene Association.
47. Mullaugh, K.M., Hamilton, J.M., Avery, G.B., Felix, J.D., Mead, R.N., Willey, J.D., and Kieber, R.J., Temporal and spatial variability of trace volatile organic compounds in rainwater. Chemosphere, 2015. 134: p. 203-209.
48. Wedel, A., Müller, K.-P., Ratte, M., and Rudolph, J., Measurements of Volatile Organic Compounds (VOC) During POPCORN 1994: Applying a New On-Line GC–MS-Technique. Journal of Atmospheric Chemistry, 1998. 31(1): p. 73-103.
49. 陳韋立, 大氣及水樣中揮發性有機氣體自動化分析技術之建立及應用. 2000, 國立中央大學化學所.
50. Navazo, M., Durana, N., Alonso, L., García, J.A., Ilardia, J.L., Gómez, M.C., and Gangoiti, G., Volatile organic compounds in urban and industrial atmospheres: measurement techniques and data analysis. International Journal of Environmental Analytical Chemistry, 2003. 83(3): p. 199-217.
51. 楊錫賢, 大氣中多環芳香烴化合物特性與來源分析. 2003, 朝陽科技大學環境工程與管理系.
52. de Blas, M., Navazo, M., Alonso, L., Durana, N., Gomez, M.C., and Iza, J., Simultaneous indoor and outdoor on-line hourly monitoring of atmospheric volatile organic compounds in an urban building. The role of inside and outside sources. Science of The Total Environment, 2012. 426: p. 327-335.
53. Lan, C.-H., Huang, Y.-L., Ho, S.-H., and Peng, C.-Y., Volatile organic compound identification and characterization by PCA and mapping at a high-technology science park. Environmental Pollution, 2014. 193: p. 156-164.
54. 工業區土地應用系統. Available from: http://120.126.138.196/idb/index.aspx?key=H08.
55. 化學材料製造業手冊. 2014: 行政院環保署.
56. 塗料製造業(包括鞋業、皮革加工、PU)作業危害及預防對策. 2016: 中華民國工業安全衛生協會.
57. 紡織及印染業作業危害及預防對策. 2016: 中華民國工業安全衛生協會.
58. 石化業有害空氣污染物管制趨勢展望. 1998: 經濟部工業局產業資訊網.
59. 國內半導體製造業及光電業之產業現況、製程廢棄污染來源於排放特性. 2003: 經濟部工業局產業資訊網.
60. 印刷電路板業混存溶劑採樣分析方法研究. 2013: 勞動部勞動及職業安全衛生研究所.