簡易檢索 / 詳目顯示

研究生: 巴瓦
VIJAY DATTARAM PAWAR
論文名稱: 水溶性歧狀高分子奈米粒子合成之研究
Diethylene glycol ether as triply branched dendritic anchors to CdSe/ZnS core/shell type nanoparticles: potential hydrophilic fluorescent probes
指導教授: 陳建添
Chen, Chien-Tien
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 383
中文關鍵詞: 不對稱催化
英文關鍵詞: Nanoparticles, Phosphorylation, Aerobic oxidation
論文種類: 學術論文
相關次數: 點閱:286下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 合成以CdSe/ZnS核之歧狀高分子連結之奈米粒子及其應用.
    氧鉬金屬催化醇類磷酯化反應.
    掌性氧釩錯合物在二級醇磷酯化合物之不對稱氧化.

    Abstract
    Chapter I. Diethylene glycol ether as triply branched dendritic anchors to CdSe/ZnS core/shell type nanoparticles: potential hydrophilic fluorescent probes
    During past decade synthesis of water soluble nanoparticles has been attracted many chemists, due to its wide range of applications especially in the labeling of biomolecules. For the study of nanohybrids in biology, robust water soluble nanoparticles required. Several research groups dedicated their efforts to make water soluble CdSe-ZnS core/shell nanoparticles. In this chapter we reported a novel method towards synthesis of nanoparticles by wrapping triply branched dendritic dietylene glycol substituted galaimde. We also successfully demonstrated new biphasic systems for ligand exchange process. The resulted nanohybrids were highly water soluble and make its three free sites for further functional group modification and useful tool for minimizing multivalent interaction in carbohydrate and proteins.
    Chapter II. Efficient Synthesis of Organophosphorus compounds by Oxometallic catalysts
    In this chapter we studied synthesis of different kind’s organophosphorus compound in two sections. In section 1 from this chapter we have documented a novel method for Phosphorylation of alcohols using amphoteric and water tolerant MoOCl4 catalyst. The method reported herein is compatible with all kind of functionalities as well as acid labile acetonide, THP ether and TBS ethers. This method can be used for phosphorylation of primary, secondary and tertiary alcohols in high isolated yields. In Section 2 we have illustrated highly enantioselctive synthesis of α-hydroxy phosphonates via aerobic oxidation of racemic hydroxy phosphonates using chiral vanady(V) complexes. Along with this we also discussed the catalytic version Pudovik reaction using MoO2Cl2 catalyst. The kinetic resolution process gave 99% enantiomerically pure compounds with 50% isolated yield.

    Table of Contents Acknowledgements i Table of Contents iv Index of Schemes viii Index of Figures x Index of Tables xii Abbreviations xiii Abstract xv Chapter I. Diethylene glycol ether as triplybranched dendritic anchors to CdSe/ZnS core/shell type nanoparticles: potential hydrophilic fluorescent probes Introduction 1.1 General Overviews of Nanocrystals and Nanotechnology 2 1.2 Quantum dots/Nanocrystals 4 1.2.1 Nanocrystals-Tunable Absorption Pattern 6 1.2.2 Nanocrystals-Tunable Emission Pattern 8 1.3 Core/Shell Nanocrsytals 9 1.4 Optical Properties of Core-Shell Nanoparticles 11 1.5 Hydrophilic Nanoparticles 13 1.6 Biological Links 15 Results and Discussion 1.7 Synthesis of Nanocrystals 18 1.8 Ligand exchange 20 1.9 Synthesis of Linker 21 1.10 Surface modification 26 1.11 Characterization of Nanocrystals 27 Conclusion 30 Experimental Section 31 References 43 Chapter II. Efficient Synthesis of Organophosphorus compounds by Oxometallic catalysts 2.1 General Overview of Organophosphorus Chemistry 49 2.1.1 Protein Phosphates 53 2.1.2 Phosphagens: Energy Rich Phosphates 54 2.1.3 Other Types of Biophosphates 55 Section 1. Catalytic Phosphorylation of Functionalized Alcohols by Amphoteric and Water tolerant MoOCl4 Introduction 2.2.1 Phosphates in Nature 58 2.2.2 Literature methods for Phosphorylation of Alcohols 61 Results and Discussion 2.2.3 Screening of Oxo-metallic Catalysts 69 2.2.4 Effect of Catalyst Loading on Phosphorylation reaction 71 2.2.5 Effect of base on Phosphorylation 72 2.2.6 Study of Phosphorylation reaction on Primary Alcohols 72 2.2.7 Study of Phosphorylation reaction on Secondary Alcohols 75 2.2.8 Study of Phosphorylation reaction on Tertiary Alcohols 77 2.2.9 Plausible Mechanism 77 Conclusion 78 Section 2. Highly Enantioselective Aerobic Oxidation of α-Hydroxy phonates catalyzed by Chiral Vanadyl (V) Complexes Introduction 2.3.1 Biologically active Hydroxy Phosphonates 79 2.3.2 α-Hydroxy Phosphonates 82 2.3.3 Asymmetric addition 83 2.3.4 Asymmetric Reduction 88 2.3.5 Asymmetric Oxidation 89 2.3.6 Enzymatic Kinetic Resolution 91 Results and Discussion 2.3.7 Basics of Oxidations 93 2.3.8 Oxygen-transfer Reactions 95 2.3.9 Catalytic Version of Pudovik Reaction 95 2.3.10 Synthesis of chiral complexes 97 2.3.11 Effect of catalyst on the asymmetric aerobic oxidation of α-Hydroxy phosphonates. 98 2.3.12 Effect of Phosphites on the asymmetric aerobic oxidation of α-Hydroxy phosphonates. 100 2.3.13 Study of α-Aryl, Alkenyl, and Alkynyl Groups on the Asymmetric Aerobic Oxidation. 100 2.3.14 Possible mechanism 105 Conclusion 106 Experimental Section 107 Reference 143 Appendix 1H NMR, 13C NMR, Data of Synthesized Compounds 153

    1. Henglein, A. Chem. Rev. 1989, 89, 1861
    2. Weller, H. Adv. Mater. 1993, 5, 88.
    3. Weller, H. Angew. Chem. Int. Ed. Engl. 1993, 32, 41.
    4. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    5. Dabbousi, B.O. J. Phys. Chem. 1997, 101, 9463.
    6. Hermanson, G. T. Bioconjugate Techniques; Academic press: London, UK, 1996, Chapter 8 and references therein.
    7. Yao, J.; Larson, D. R.; Vishwasrao H. D.; Zipfel, W. R.; Webb, W.W. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 14284.
    8. Liz-Marzan, L. M.; Norris, D. J.; Bawendi, M. G.; Betley, T.; Doyle, H.; Guyot-Sionnest, P.; Klimov, V. I.; Kotov, N. A.; Mulvaney, P.; Murray, C. B.; Schiffrin, D. J.; Shin, M.; Sun, S.; Wang, C. Editorial for MRS Bulletin 2001, 26, 981.
    9. Schlamp, M. C.; Peng, X.; Alivisatos, A. P. J. Appl. Phys. 1997, 82, 5837.
    10. Greenham, N. C.; Peng, X.; Alivisatos, A. P. Phys. Rev. B 1996, 54, 17628.
    11. Coe, S.; Woo, W. K.; Bawendi, M. G.; Bulovic, V. Nature 2002, 420.
    12. Huynh, W. U.; Dittmer, J. J.; Libby, W. C.; Whiting, G. L.; Alivisatos, A. P, Adv. Func. Mater. 2003, 13, 73.
    13. Klimov, V. I. J. Phys. Chem. B 2000, 104, 6112.
    14. Suzuki, N.; Tomita, Y.; Kojima, T. Appl. Phys. Lett. 2002, 81, 4121.
    15. Walters, R. J.; Kik, P. G.; Casperson, J. D.; Atwater, H. A.; Lindstedt, R.; Giorgi, M.; Bourianoff, G. Appl. Phys. Lett. 2004, 85, 2622.
    16. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013.
    17. Dubertret, B. P.; Skourides, D. J.; Norris, V.; Noireaux, A. H.; Brivanlou, A.; Libchaber. Science 2002, 298, 1759.
    18. Alivisatos, A. P. Science 1996, 271, 933.
    19. Niemeyer, C. M. Angew. Chem., Int. Ed., 2001, 40, 4128.
    20. Niemeyer, C. M. Angew. Chem., Int. Ed., 2003, 42, 5796.
    21. Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z.; Stephens, L. P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
    22. Yin, Y.; Li, Z.-Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S. J. Mater. Chem. 2002, 12, 522–527.
    23. Bahnemann, D. W.; Kormann, M. R. H. C. J. Phys. Chem. 1987, 91, 3789.
    24. Hussain, M.; Nakashira, A.; Niihara, K., Mater. Lett. 1996, 26, 299.
    25. Wilson, W. L. Science 1993, 262, 1242.
    26. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
    27. Vossmeyer, T.; Katsikas, M. G. L.; Popovic, I.G.; Diesner, K.; Chemseddine, A.; Eychmüller, A.; Weller, H. J. Phys. Chem. 1994, 98, 7665.
    28. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc.1993, 115, 8706.
    29. Rogach, A. L. Ber. Bunsenges. Phys. Chem. 1996, 100, 1772.
    30. Kumbhojkar, N. NanoStructured Mat. 1998, 10, 117.
    31. Wells, R. L.; Gladfelter, W. L. J. Cluster Science 1997, 8, 217.
    32. Micic, O. I. J. Luminesc. 1996, 70, 95.
    33. Uchida, H. J. Phys. Chem. 1991, 95, 5382.
    34. Malik, M. A.; O’Brien, P.; Norager, S.; Smith, J. J. Mater. Chem. 2003, 13, 2595.
    35. Micic, O. I. J. Phys. Chem. 1994, 98, 4966.
    36. Schneider, T.; Haase, A. K. M.; Naused, S.; Weller, H. Ber. Bundesges. Phys. Chem. 1997, 101, 1654.
    37. R.H. Bube "Electrons in Solids." Academic Press Inc., San Diego, CA 1988
    38. Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
    39. C.A. Mirkin, R. Elghanian, J.J. Storhoff, R.C. Mucic, R.L. Letsinger, Science. 1997, 277, 1078.
    40. Brus, L. E.; Efros, A. I.; Itoh, T. J.; Luminesc. 1996, 70, R7.
    41. Li, L.-S.; Hu, J.; Yang, W.; Alivisatos, A. P. Nano. Lett. 2001, 1, 349.
    42. Leatherdale, C. A.; Bawendi, M. G. Phys. Rev. B 2001, 6316, 165315.
    43. Guyot-Sionnest, P.; Shim, M.; Matranga, C.; Hines, M. Phys. Rev. B 1999, 60, R2181.
    44. Chen, Z.; Yu, J.; Tokita M.; Miyata, S. J. Phys. D: Appl. Phys. 2000, 33, 1643.
    45. Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. J. Phys. Chem. 1994, 98, 4109.
    46. Potapova, I.; Mruk, R.; Prehl, S.; Zentel, R.; Basche, T.; Mews, A. J. Am. Chem. Soc.2003, 125, 320.
    47. Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781.
    48. Hines, M.A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468.
    49. Nirmal M., Nature 1996, 383, 802.
    50. Wilson, W.L.; Szajowski, P. F.; Brus, L. E. Science 1993, 262, 1242.
    51. Spnhel, L.; Haase, M.; Weller, H.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 5649.
    52. Danek, M.; Jensen, K. F.; Murray C. B.; Bawendi, M. G. Chem. Mater. 1996, 8, 173.
    53. Kortan, A. R.; Hull, R.; Opila, R. L.; Bawendi, M. G.; Steigerwald, M. L.; Carroll, P. J.; Brus, L. E. J. Am. Chem. Soc. 1990, 112, 1327.
    54. Mews, A.; Kadavanich, A. V.; Banin, U.; Alivisatos, A. P. Phys. Rev. B. 1996, 53, 13242.
    55. Tian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. J. Phys. Chem. 1996, 100, 8927.
    56. Danek, M.; Jensen, K. F.; Murray C. B.; Bawendi, M. G.Appl. Phys. Lett. 1994, 65, 2795.
    57. Chan, W. C. W.; Nie, S. Science 1998, 281, 2016.
    58. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, P. A. Science 1998, 281, 2013.
    59. Dubertret, B. etal Science 2002, 298, 1759.
    60. Chen, C.-C.; Chao, C.-Y.; Lang, Z.-H. Chemistry of Materials, 2000, 12, 1516.
    61. Murray, C. B.; Kagan, C. R.; Bawendi, M.G. Annu. Rev. Mater. Sci. 2000, 30, 545.
    62. Slot, J. W.; Geuze, H. J. J. Cell. Biol. 1981, 183.
    63. Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A..; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.
    64. Labande, A.; Astruc, D. Chem. Commun. 2000, 1007.
    65. Sato, T.; Ahmed, H.; Brown, D.; Johnson, B. F. G. J. Appl. Phys. 1997, 82, 696.
    66. Mossmer, S.; Sptaz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W. Macromolecule 2000, 33, 4791.
    67. Walker, C. H.; St. John, J. V.; Wisian-Neilson, P. J. Am. Chem. Soc. 2001, 123, 3846.
    68. Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisator, A. P. J. Am. Chem. Soc. 1997, 119, 7019.
    69. Bundle, D. R.; Young, N. M. Curr. Opin. Struct. Biol. 1995, 2, 666.
    70. Gensch, T.; Hofkens, J.; Heirmann, A.; Tsuda, K.; Verheijen, W.; Vosch, T.; Christ, T.; Basche, T.; Muller, K.; Schryver, T. C. Angew. Chem. Int. Ed. Engl. 1994, 33, 2413.
    71. Ashton, P. R.; Housell, E. F.; Jayaraman, N.; Nilsen, T.; M.; Spencer, N.; Stoddart, J. F.; Young, M. J. J. Org. Chem. 1998, 63, 3429.
    72. Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.;. Nie, S. M. Current Opinion in Biotechnology 2002, 13, 40.
    73. Correa Duarte, M.A.; Giersig, M.; LizMarzan, L.M. Chem. Phys. Lett. 1998, 286, 497.
    74. Alivisatos, A. P.; Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S. Science 1998, 281, 2013.
    75. Alivisatos, A. P. Nature 1996, 382, 609.
    76. Mirkin, C.A.; Elghanian, R.; Storhoff, J.J.; Mucic, R.C.; Letsinger, R.L. Science 1997, 277, 1078.
    77. Chen, C.-T.; Kuo, J.-H.; Li, C.-H.; Barhate, N. B.; Hon, S.-W.; Li, T.-W.; Chao, S.-D.; Liu, C.-C.; Li, Y.-C.; Chang, I.-H.; Lin, J.-S.; Liu, C.-J.; Chou, Y.-C. Org. Lett., 2001, 3, 3729.
    78. Lin, C.-C.; Yeh, Y.-C.; Yang, C.-Y.; Chen, C.-L.; Chen, G.-F.; Chen, C.-C.; Wu, Y.-C. J. Am. Chem. Soc., 2002, 124, 3508.
    79. Chen, C.-T.; Lin, J.-S.; Kuo, J.-H.; Weng, S.-S.; Cuo, T.-S.; Lin, Y.-W.; Cheng, C.-C.; Huang, Y.-C.; Yu, J.-K.; Chou, P.-T. Org. Lett., 2004, 6, 4471.
    80. Chen, C.-T.; Kuo, J.-H.; Ku, C.-H.; Weng, S.-S.; Liu, C.-Y. J. Org. Chem., 2005, 70, 1328.
    81. Chen, C.-T.; Kuo, J.-H.; Pawar, V. D.; Munot, Y. S.; Weng, S.-S.; Ku, C.-H.; Liu, C.-Y. J. Org. Chem., 2005, 70, 1188.
    82. Wang, Y. A.; Li, J. J.; Chen, J.; Peng, X. J. Am. Chem. Soc., 2002, 124, 2293.
    83. Mammen, M.; Choi, S. K.; Whitesides, G. M. Angew. Chem., Int. Ed., 1998, 37, 2754.
    84. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545.
    85. Murray, C. B.; Bawendi, M. G. J. Am. Chem. Soc., 1993, 205, 136.
    86. Peng, Z. A.; Peng, X. J. Am. Chem. Soc. 2001, 123, 183.
    87. Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. J. Phys. Chem., 1994, 98, 4109.
    88. Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc., 1993, 115, 8706.
    89. Skaff, H.; Emrick, T. Chem. Commun., 2003, 52.
    90. Zhang, C.; O'Brien, S.; Balogh, L. J. Phys. Chem. B, 2002, 106, 10316.
    91. Reiss, P.; Bleuse, J.; Pron, A. Nano Lett. 2002, 2, 781.
    92. Kim, B. S.; Avila, L.; Brus, L. E.; Herman, I. P. Appl. Phys. Lett., 2000, 76, 3715.
    93. Green, M.; Allsop, N.; Wakefield, G.; Dobson, P. J.; Hutchison, J. L. J. Mater. Chem., 2002, 12, 2671.

    無法下載圖示 本全文未授權公開
    QR CODE