簡易檢索 / 詳目顯示

研究生: 蕭宛甄
論文名稱: 以前景物動態機率模型為基礎之嬰兒危險程度評估系統
指導教授: 方瓊瑤
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 68
中文關鍵詞: 肢體動作監控嬰兒危險程度評估機率模型
論文種類: 學術論文
相關次數: 點閱:102下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據衛生署統計資料顯示,意外傷害是造成新生兒死亡的主要原因之一。意外傷害包含新生兒摔傷、被外物砸傷、被外物遮蔽口鼻窒息等。因此本論文希望開發一套視覺式的新生兒監控系統,可以即時的通知照顧者減少事故傷害的發生。
    本論文主要分成三個部分:建立前景物顏色模型、嬰兒偵測、危險程度分析。監控攝影機架設於嬰兒床的正上方,系統讀入連續時間的新生兒動作影像後,先建立前景物顏色模型(FC model)。FC model建立時分別統計前景物的顏色及整張影像中所有的顏色,之後可作為嬰兒偵測時的依據。接著根據FC model,使用貝氏定理以顏色為特徵計算前景物的機率,另外根據MHI(motion history image),以motion為特徵計算前景物的機率。最後顏色機率與motion機率結合,得到整合後的前景物機率完成嬰兒偵測。之後擷取出幾種代表性的特徵,代入函式得到個別的危險程度並依照新生兒月份做調整,最後整合所有特徵得到最終的危險程度值。本論文將危險程度分成五個等級,若超過系統設定的安全範圍則發出警告通知照顧者。

    This study presents a method for infant detection and degree of danger analysis. The system is divided into three parts: foreground color model (FC model) construction, infant detection, and degree of danger analysis. Before the infant detection, we construct FC model. In FC model construction, we calculate the foreground color histogram and the color histogram in an image, which are the basis for infant detection. Then we apply Bayes’ theorem to calculate the foreground probability based on color, addition. Furthermore, we according to MHI to calculate the foreground probability based on motion. Finally, we combine the color probability and the motion probability to obtain the foreground probability and to complete the infant detection. After that, we capture several features and calculate the individual degree of danger, and we adjust the degree of danger based on infant month age. Finally, we integrate all the features to obtain the final degree of danger. In this study, the degree of danger is divided into five levels. If it exceeds the system's safety range, the system will issue a warning to notice the baby-sitter.

    第一章 緒論                        1-1 1.1 前言…………………………………………………………………1-1 1.2 研究困難……………………………………………………………1-2 1.3 文獻探討……………………………………………………………1-5 1.4 論文架構……………………………………………………………1-6 第二章 嬰兒危險程度評估系統    2-1 2.1 系統目的……………………………………………………………2-1 2.2 系統流程……………………………………………………………2-3 2.3 前景物顏色模型之建立……………………………………………2-5 2.3.1 影像前處理…………………………………………………………2-5 2.3.2 前景物顏色模型建立………………………………………………2-7 第三章 嬰兒偵測 3-1 3.1 以顏色為特徵計算貝氏定理………………………………………3-1 3.2 整合顏色特徵與嬰兒移動量………………………………………3-9 第四章 危險程度分析 4-1 4.1 特徵擷取……………………………………………………………4-1 4.2 各特徵之危險程度計算……………………………………………4-4 4.3 各特徵之危險程度分析……………………………………………4-6 第五章 實驗結果 5-1 5.1 前景物顏色模型建立分析…………………………………………5-2 5.2 特徵權重分析………………………………………………………5-7 5.3 嬰兒肢體動作之危險程度分析…………………………………5-14 第六章 結論與未來工作 6-1 6.1 結論…………………………………………………………………6-1 6.2 未來工作……………………………………………………………6-2

    [1] 行政院衛生署,www.doh.gov.tw/CHT2006/DisplayStatisticFile.aspx?d=69056,”嬰兒死亡人數按國際疾病傷害及死因分類標準之基本分類與性別、生存月日分”,2007年。
    [呂07] 呂適存提供,http://www.pediatrics.com.tw/Observation%20baby.htm,育兒電子書網頁,如何觀察寶寶,2007年。
    [Hsu02] R. L. Hsu, M. Abdel-Mottaleb, and A. K. Jain, “Face detection in color images,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI 2002), Vol. 24, No. 5, pp.696-706, 2002.
    [Par06] J. Park, A. Tabb, and A. C. Kak, “Hierarchical data structure for real-time background subtraction,” Proceedings of the IEEE International Conference on Image Processing (ICIP 2006), Atlanta, GA, USA, pp.1849-1852, 2006.
    [Zar08] N. Zarka, Z. Alhalah, and R. Deeb, “Real-time human motion detection and tracking,” Proceedings of the International Conference on Information and Communication Technologies: From Theory to Applications (ICTTA 2008), Damascus, Syria, pp. 1-6, 2008.
    [Zha08] Z. Zhang, H. Gunes, and M. Piccardi, “An accurate algorithm for head detection based on XYZ and HSV hair and skin color models,” Proceedings of the IEEE International Conference on Image Processing (ICIP 2008), San Diego, California, USA., pp. 1644-1647, 2008.
    [Zhao08] M. Zhao, D. Sun, and H. He, “Hair-color modeling and head detection,” Proceedings of the World Congress on Intelligent Control and Automation (WCICA 2008), Chongqing, China, pp. 7773-7776, 2008.
    [Hu04] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance of object motion and behaviors,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews (SMC 2004), Vol. 34, No. 3, pp. 334-352, 2004.
    [Bla05] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as space-time shapes,” Proceedings of the IEEE International Conference on Computer Vision (ICCV 2005), Beijing, China, Vol. 2, pp. 1395-1402, 2005.
    [Osa09] Y. Osawa, K. Shima, N. Bu, T. Tsuji, T. Tsuji, I. Ishii, H. Matsuda, K. Orito, T. Ikeda, and S. Noda, “A motion-based system to evaluate infant movements using real-time video analysis,” Proceedings of the International Conference on Biomedical Engineering (ICBE 2009), Venice, Italy , pp. 2043-2047, 2009.
    [Gor07] L. Gorelick, M. Blank, E. Shechtman, M. Irani, and R. Basri, “Actions as space-time shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI 2007), Vol. 29, No. 12, pp.2247-2253, 2007.
    [Yac06] Y. Yacoob and L. S. Davis, “Detection and analysis of hair,” IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI 2006), Vol. 28, No. 7, pp. 1164-1169, 2006.
    [Liu09] F. Liu and M. Gleicher, “Learning color and locality cues for moving object detection and segmentation,” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), Miami, Florida, USA, pp.320-327, 2009.
    [Hua09] S. S. Huang, L. C. Fu, and P.Y. Hsiao, “Region-level motion-based foreground segmentation under a bayesian network,” IEEE Transactions on Circuits and Systems for Video Technology (CSVT 2009), Vol. 19, No. 4, pp. 522-532, 2009.
    [Yac05] Y. Yacoob and L. Davis, “Detection and analysis of hair,” Proceedings of the IEEE International Conference on Computer Vision (ICCV 2005), Beijing, China, Vol. 1, pp.741-748, 2005.
    [Kak07] P. Kakumanua, S. Makrogiannisa, and N. Bourbakis, “A survey of skin-color modeling and detection methods,” Pattern Recognition (PR 2007), Vol. 40, No. 3, pp. 1106-1122, 2007.
    [Cha09] C. S. Chan and H. Liu, “Fuzzy qualitative human motion analysis,” IEEE Transactions on Fuzzy Systems (TFS 2009), Vol. 17, No. 4, pp. 851-862, 2009.
    [Du08] C. Du, Q. Wu, J. Yang, X. He, and Y. Chen, “Subspace analysis methods plus motion history image for human action recognition,” Digital Image Computing: Techniques and Applications (DICTA 2008), Canberra, Australia, pp. 606-611, 2008.
    [Bha03] J. Bhatt, N. Da Vitoria Lobo, M. Shah, and G. Bebis, “Automatic recognition of baby gesture,” Proceedings of the IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2003), Sacramento, California, USA, pp. 610-615, 2003.
    [Nis04] Y. Nishida, Y. Motomura, K. Kitamura, and H. Mizoguchi, “Infant behavior simulation based on an environmental model and a developmental behavior model,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC 2004), The Hague, The Netherlands, Vol. 2, pp. 1555-1560, 2004.
    [Wei06] D. Weinland, R. Ronfard, and E. Boyer, “Free viewpoint action recognition using motion history volumes,” Computer Vision and Image Understanding(CVIU 2006), Vol. 104, No. 2-3, pp. 249-257, 2006.
    [Dav01] J. W. Davis, “Hierarchical motion history images for recognizing human motion,” Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video(Event 2001), Vancouver, Canada, pp. 39-46, 2001.
    [Tur08] P. Turaga, R. Chellappa, V. S. Subrahmanian, and O. Udrea, “Machine recognition of human activities: a survey,” IEEE Transactions on Circuits and Systems for Video Technology(CSVT 2008), Vol. 18, No. 11, 2008, pp. 1473-1488, 2008.

    下載圖示
    QR CODE