簡易檢索 / 詳目顯示

研究生: 黃柏豪
Huang, Bo-Hao
論文名稱: 海流發電機最佳化配置研究
Optimization of the Arrangement and Selection of Ocean Current Turbines
指導教授: 吳朝榮
Wu, Chau-Ron
口試委員: 辛宜佳
Hsin, Yi-Chia
葉庭光
Yeh, Ting-Kuang
吳朝榮
Wu, Chau-Ron
口試日期: 2023/07/28
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 38
中文關鍵詞: 海流發電機模擬退火演算法最佳化尾流
英文關鍵詞: ocean current turbines, Simulated annealing, optimization, wake
研究方法: 實驗設計法次級資料分析
DOI URL: http://doi.org/10.6345/NTNU202301294
論文種類: 學術論文
相關次數: 點閱:83下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於尾流的存在使得在大面積佈置海流發電機時將降低各個機組的效率,且很難通過物理手段消除尾流的影響,因此在佈置海流發電機前,去預測每部機組之間造成的影響和總發電量並優化排列方式是十分重要的課題。本研究參考風力發電機組的配置方式,利用尾流的計算公式與模擬退火演算法,提出出一套專門針對海流發電機配置與優化的模擬系統,並用產生之結果與其它案例進行比較,以此來驗證此系統的準確度與可行性。而實驗結果表明,此模擬系統不僅能提供海流發電機配置的方式,也能計算出在受尾流的影響下的總發電量,且在比較幾種配置方案後,模擬系統與其他配置方案比較皆有更好的表現,可為未來更複雜的環境模擬提供基礎。

    Wake effects in a large-scale array of ocean current turbines diminished the efficiency of an individual unit. Eliminating the real-life wakes was nearly impossible by those physical means. Thus, accurately predicting the impact among units and optimizing the arrangement of turbines were crucial issues. Inspired by configuration methods used in wind turbine arrays, this study developed a simulation system specifically for configuring and optimizing ocean current turbines. The system incorporated wake calculation formulas and simulated annealing algorithms. Results were compared with the other cases to validate the system's accuracy and feasibility. Experimental findings demonstrated that the simulation system not only provided a methodology for configuring ocean current turbines but also calculated total power generation, accounting for wake effects. Additionally, the simulation system outperformed various configuration scenarios, highlighting its potential as a foundation for future simulations in more complex environments.

    第一章 緒論 1 1.1 前言 1 1.2 海流能發電 2 1.3 文獻回顧 2 第二章 研究工具與方法 4 2.1 研究方法 4 2.2 模型規劃 4 2.2.1 網格設計 4 2.2.2 尾流計算 5 2.2.3 Jensen模型 6 2.3 初始參數設定 8 2.3.1 網格大小 8 2.3.2 參數建立 8 2.4 程式架構 10 2.4.1 模擬退火演算法 10 2.4.2 程式語言 10 2.4.3 流程介紹 11 第三章 模型結果與討論 18 3.1 模型流程改進 18 3.1.1 新解的選擇方式 18 3.1.2 九宮格型輪盤式選擇 19 3.2 模型結果 21 3.2.1模型結果討論 23 3.2.2 網格邊界之影響 25 3.2.3 模型結果驗證 28 3.3 模型結果比較 30 3.3.1 三種範例比較 30 第四章 結論與未來方向 35 4.1 結論 35 4.1 未來方向 35 參考文獻 37

    中華民國經濟部臺灣電力公司。2022年再生能源相關發電資訊之統計。
    https://www.taipower.com.tw/tc/page.aspx?mid=204
    Sheng Fong Lin(2010). Ocean Current Power in the Region around Taiwan.
    郭振華(2020)。浮游式洋流發電機製作與時海測式正式報告書。
    S.A. Grady, M.Y. Hussaini, M.M. Abdullah(2004). Placement of wind turbines using genetic algorithms.
    Alireza Emami, Pirooz Noghreh(2009). New approach on optimization in placement of wind turbines within wind farm by genetic algorithms.
    王泰元(2011)。利用 GRASP 解決風力發電場最佳風機配置問題。
    Katic I, Højstrup J, Jensen N(1986). A simple model for cluster efficiency. In: European wind energy association conference and exhibition, p. 407–10.
    Larsen GC(1988). A simple wake calculation procedure.https://backend.orbit.dtu.dk/ws/portalfiles/portal/55567186/ris_m_2760.pdf
    Sten Frandsen(1988). On the wind speed reduction in the center of large clusters of wind turbines; J Wind Eng Ind Aerodyn, 39 (1), pp. 251-265.
    WU Di, LIU Huaixi, MIAO Desheng(2019). Research on Offshore Wind Farm Units Layout Considering the Algorithm of Wake Model and the Change of Wind Direction.
    S. KIRKPATRICK, C. D. GELATT, JR., AND M. P. VECCHI(1983). Optimization by Simulated Annealing.
    Reza Abbaschian, Robert E. Reed-Hill(2008). Physical Metallurgy Principles.
    Russell, Stuart J.; Norvig, Peter (2003). Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, pp. 111–114, ISBN 0-13-790395-2
    David E. Goldberg(1989). Genetic Algorithms in Search, Optimization and Machine Learning.
    陳景林(2015)。離岸風機最佳化佈置分析技術及離岸風機規範對於離岸風機支撐結構在極限風況之因應對策。
    Mehmet Bes¸kirli, Ismail Koç, Hüseyin Haklı, Halife Kodaz(2017). A new optimization algorithm for solving wind turbine placement problem: Binary artificial algae algorithm.
    Sittichoke Pookpunt, Weerakorn Ongsakul(2012). Optimal placement of wind turbines within wind farm using binary particle swarm optimization with time-varying acceleration.

    下載圖示
    QR CODE