簡易檢索 / 詳目顯示

研究生: 蔡安理
Tsai, An-Li
論文名稱: 藉由超大分子氣泡與分子噴流的研究瞭解星遽增星系的演化
The Evolution of Starburst Galaxies through Molecular Superbubbles and Outflows
指導教授: 管一政
Kuan, Yi-Jehng
松下聡樹
Satoki Matsushita
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 147
中文關鍵詞: 星系分子氣體星遽增星系噴流超大氣泡演化恆星形成天文
英文關鍵詞: Galaxy, Molecular gas, Starburst, Outflow, Superbubble, Evolution, Star Formation, Astronomy
論文種類: 學術論文
相關次數: 點閱:192下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了瞭解星系的演化,我們研究星系如何在星系活動中消耗他們的燃料,分子氣體。星遽增星系是研究分子氣體如何被消耗的一個很好的研究對象,它是一種在星系中心正在進行劇烈恆星形成的星系,它因為劇烈恆星形成而產生星系尺度大的噴流並拋出大量的分子氣體。然而,對於星系失去分子氣體的精確測量卻非常少,這是因為分子噴流或巨大分子氣泡的分佈很迷散以致於很稀薄,因此不容易被過去敏感度較低的儀器偵測到。
    雖然單天線電波望遠鏡沒有觀測通量損失的問題,但是它的低解析度不足以解析分子噴流或者巨大分子氣泡的細微結構。最近發展的干涉陣列電波望遠鏡觀測,雖然可藉由分子光譜的寬翼譜線偵測到高速分子噴流,但是直接觀測到分子噴流的影像仍然非常少,這對於精確定出分子噴流或巨大分子氣泡的性質為一大缺失。目前僅有極為少數的分子噴流與超大分子氣泡被以高解析度干涉陣列電波望遠鏡觀測到。其中一個最有名的星系就是星遽增星系M82。分子噴流的性質,譬如大小、速度、質量等,皆可被直接觀測到。本研究增加了另外兩個目標星系,NGC 2146以及NGC 3628,它們與M82有非常相似的特性。
    我們使用日本野邊山干涉陣列電波望遠鏡(Nobeyama Millimeter Array, NMA)觀測這兩個星系。我們的觀測成功地偵測到星系盤外,數百至數千pc大小的分子噴流以及超大分子氣泡。它們的膨脹速度約每秒35-200公里,拋出的質量約107-8個太陽質量,需要動能約1053-55爾格。NGC 2146的分子噴流速率每年損失約17-34太陽質量,NGC 3628則每年損失約4-7太陽質量。
    為了瞭解星系如何藉由分子噴流與超大分子氣泡損失分子氣體質量,我們加入了Chandra X-ray太空望遠鏡資料庫的觀測資料。X-ray觀測資料的分佈位置與分子噴流或超大分子氣泡有很好的空間分佈相關性。我們發現較強的低能量X-ray譜線,分佈在分子噴流或超大分子氣泡的裡面,或者分佈在大致相同的位置。此外,電漿氣體產生的熱壓力比分子噴流的壓力大上一到兩個數量級。這顯示分子噴流正被電漿氣體向外推擠。
    由於我們可以精確測量分子氣體的損失,我們得以研究分子氣體的消耗在星系演化中所造成的影響。為了這個目的,我們更加入了NMA的三釐米連續譜線觀測資料,這是一個在電波波段偵測大質量恆星形成區很好的指標。結果顯示,星系中星遽增區域的恆星形成速率在NGC 2146為每年16個太陽質量,在NGC 3628為每年2個太陽質量。這顯示星系藉由分子噴流或者巨大分子氣泡損失分子質量比恆星形成速率還要更快。分子氣體質量損失約為恆星形成率的1-3倍。這提供了一個很好的證據,分子噴流或巨大分子氣泡造成的分子質量損失,可阻止恆星繼續形成。
    在比較NGC 2146、NGC 3628、與最具代表性的星遽增星系M82三個星系的三種觀測資料的分子噴流與超大分子氣泡數據之後,我們發現它們分別處於星遽增活動的不同演化階段。NGC 3628最年輕,NGC 2146居中,M82最老。NGC 3628的星遽增現象正被增強中,被拋出的分子噴流氣體回到星系盤的時間比星系盤分子氣體完全消耗完的時間大約短了一個數量級,這顯示這些回到星系盤的分子氣體很快就能成為補充恆星形成的燃料。NGC 2146的星遽增現象也正被增強中,但是被拋出的分子氣體回到星系盤時,星系盤分子氣體也快要消耗完了,這顯示回到星系盤的分子氣體對於延長星遽增活動的時間的影響較小。M82的星遽增現象正在降低,被拋出的分子氣體回到星系盤的時間比星系盤分子氣體完全消耗完的時間長約一個數量級,這顯示被拋出的分子氣體對於延長星遽增活動的時間沒有幫助。這三個星系顯示分子噴流在星遽增活動早期,因為分子氣體來得及回到星系盤繼續提供恆星行成的燃料,而延長星遽增的活動時間,但是在星遽增活動晚期卻會抑制星系的恆星形成現象。

    關鍵字:星系、分子氣體、星遽增星系、噴流、超大氣泡、演化、恆星形成、天文

    In order to understand the galaxies evolution, we study how galaxies loss their fuel, molecular gas, through galaxy activities. Starburst galaxies are good candidates to study the molecular gas consumption in galaxies. They are currently undergoing intense star formation in the central region of the galaxies, and their strong star formation produced galactic-scale outflow and ejected large amount of molecular gas. However, the accurate measurement of losing molecular gas are very rare because it is difficult to directly observe molecular outflows or superbubbles
    due to their diffuse/extended nature and the poor instrumental sensitivities.

    Single dish data, although do not have missing flux problem, the poor resolution is not able to resolve the detail structure of molecular outflows or superbubbles. Recent interferometric observations, although some molecular outflows have been detected from high-velocity broad-wing components, the directly evidence from images is sill missing to constrain their properties. So far, only a few molecular outflows and superbubbles in galaxies have been observed with high accuracy. One famous example is the kpc-scale molecular outflow detected from the typical starburst galaxy M82. The detail properties, such as size, velocity, mass, can be measured directly from the interferometer data. However, to known the common features of how molecular gas are losing from galaxies,
    we need more samples. We includes two more samples from nearby edge-on starburst galaxies as our case studies,
    NGC 2146 and NGC 3628, which have similar characteristics with M82.

    We observed the CO(1-0) line on these two galaxies by using the Nobeyama Millimeter Array (NMA). Our results successfully detected the molecular outflows and superbubbles. Molecular outflows and superbubbles can be clearly seen above or below the galactic plane with size of sub-kpc to kpc scale. The expanding velocity is 35-200 km s^{-1}, their mass is 10^{7-8} M_{\sun}, and the kinetic energy is 10^{53-55} erg. The molecular outflow rate in NGC 2146 is 17-34 M_{\sun} yr^{-1}, that in NGC 3628 is 4-7 M_{\sun} yr^{-1}.

    In order to know whether and how galaxies losing their molecular gas through outflows and superbubbles, we include the Chandra X-ray Observatory (CXO) soft X-ray archive data to see how plasma gas affect the molecular outflows. The distribution between soft X-ray data and molecular outflows or superbubbles have good spatial correlation. We can see the strong soft X-ray emission either locates within the molecular outflows or superbubble, or distributes in the same area with molecular outflows or superbubbles. Besides, the thermal pressure of plasma gas are 1-2 order larger than that of molecular outflows. This indicates the molecular outflows are pushing by plasma gas due to the thermal expansion.

    Since we have accurate measurement on losing molecular gas, we can precisely study the effect of molecular gas consumption on galaxies evolution. For this purpose, we include our NMA 3 mm continuum data, which is a good tracer of massive star forming region at radio waveband. The results show that the SFR in starburst region in NGC 2146 is 16 M_{\sun} yr^{-1}, and that in NGC 3628 is 2 M_{\sun} yr{-1}. This indicates that galaxies loss their molecular gas through outflows or superbubbles faster than galaxies forming stars. The molecular gas mass loss rate is about 1-3 times larger than the SFR in starburst region. This provides a direct evidence that molecular outflows or superbubbles can quench star formation.

    After comparing several parameters derived from molecular outflows among our galaxies and M82, we found that they are in three different evolutionary stages of starburst activities. NGC 3628 is the youngest one, NGC 2146 is the middle-age, and M82 is the oldest one. In NGC 3628, the starburst activity is enhanced, the timescale that molecular outflow returns to the galactic disk is one order of magnitude shorter than the the molecular gas consumption timescale, suggesting that the returned gas will fuel the coming star formation. In NGC 2146, the starburst activity is also enhanced, but the molecular outflow gas fallback timescale is a little bit smaller than the gas consumption timescale, suggesting the gas could extend the starburst timescale, but not too much. In M82, the starburst activity is decreasing, the molecular outflow gas fallback timescale is about one order of magnitude longer than the molecular gas consumption timescale, suggesting the gas do not help to extend the starburst timescale. The three cases indicate the molecular outflow extends starburst timescale in the early and middle stage, but quenches the star formation in the late stage of starburst activity.

    Keywords: Galaxy, Molecular gas, Starburst, Outflow, Superbubble, Evolution, Star formation, Astronomy

    Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Starburst Galaxies . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Galactic Outflows and Superbubbles . . . . . . . . . . . . . . 4 1.3 Objective of This Project . . . . . . . . . . . . . . . . . . . . . 10 2 Data Types and Samples . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Selection Criteria . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Our Target Galaxies . . . . . . . . . . . . . . . . . . . 16 3 Observations and Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 CO (1-0) Observations . . . . . . . . . . . . . . . . . . . . . . 21 3.1.1 NGC 2146 Nobeyama Millimeter Array (NMA) Data . . . 21 3.1.2 NGC 3628 NMA Data . . . . . . . . . . . . . . . . . . 22 3.2 Soft X-ray Data . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 NGC 2146 Chandra X-ray Observatory (CXO) Data . 22 3.2.2 NGC 3628 CXO Archival Data . . . . . . . . . . . . . 23 3.3 Radio Free-free Observations . . . . . . . . . . . . . . . . . . . 24 3.3.1 NGC 2146 NMA data . . . . . . . . . . . . . . . . . . 24 3.3.2 NGC 3628 NMA data . . . . . . . . . . . . . . . . . . 24 4 Case Study I: NGC 2146 . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Overall Molecular Gas . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Molecular Superbubbles and Outflow . . . . . . . . . . . . . . 35 4.2.1 Large-Scale Expanding Molecular Superbubble and Outflow . . . . 35 4.2.2 Smaller-Scale Molecular Superbubbles . . . . . . . . . 38 4.2.3 Searching for More Bubbles or Outflows . . . . . . . . 39 4.2.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.3 Plasma Outflow . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 51 4.3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.4 Configurations of Outflows and Bubbles . . . . . . . . 59 4.4 Starburst Region . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 60 4.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 62 5 Case Study II: NGC 3628 . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1 Overall Molecular Gas . . . . . . . . . . . . . . . . . . . . . . 71 5.1.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . 76 5.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Plasma Outflow . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2.2 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 89 5.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.3 Molecular Outflow . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.3.2 Bar, Disk, or Superbubbles? . . . . . . . . . . . . . . . 96 5.4 Starburst Region . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.1 Distribution . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 105 6.1 General Properties of Molecular Outflows and Superbubbles . 105 6.2 The Significance of Molecular Outflows . . . . . . . . . . . . . 108 6.2.1 Ionization is Less Important than Ejection . . . . . . . 108 6.2.2 Ejection is More Significant than Star Formation . . . 118 6.2.3 Molecular Outflows Dominate the Gas Consumption in Starburst Activities . . . . . . . . . . . . . . . . . . 119 6.3 The Parameters of Molecular Outflows . . . . . . . . . . . . . 121 6.3.1 Equivalent Expanding Velocity of Molecular Outflows . 122 6.3.2 Maximum Distances of Molecular Outflows . . . . . . . 123 6.3.3 Fallback Timescale of Molecular Outflows . . . . . . . 124 6.4 Evolutional Stages of Starburst Galaxies . . . . . . . . . . . . 126 6.4.1 The Molecular Gas Consumption Timescale . . . . . . 126 6.4.2 Progress of the Starburst Activity . . . . . . . . . . . . 129 6.5 The Scenario of Starburst Evolution . . . . . . . . . . . . . . . 132 6.5.1 The Scenario of Starburst History . . . . . . . . . . . . 132 6.5.2 The Scenario of Quenching Process . . . . . . . . . . . 133 7 Summary . . . . . . . . . . . . . . . . . . . . . . . . 135 Bibliography . . . . . . . . . . . 139 List of Figures 1.1 The spectral energy distribution (SED) of M82 in radio and FIR waveband . . . . . . . . 5 1.2 The Evolution Stage of the Starbursts . . . . . . . . . . . . . 8 2.1 Optical image of NGC 2146 . . . . . . . . . . . . . . . . . . . 18 2.2 Optical image of NGC 3628 . . . . . . . . . . . . . . . . . . . 20 4.1 CO(1-0) channel maps of NGC 2146 . . . . . . . . . . . . . . 29 4.1 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 CO(1-0) moment zero and moment one maps of NGC 2146 . . 31 4.2 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 The moment zero map and moment one map after a clockwise rotation of 137 degree . . . . 34 4.4 The p-v diagram along the major axis of NGC 2146 . . . . . 35 4.5 The p-v diagram along the minor axis of NGC 2146 . . . . . 37 4.6 The p-v diagrams along the major axis with various offsets . 40 4.7 The p-v diagram of the molecular bubble SB2 in NGC 2146 41 4.8 Observed and fitted rotational curve along the major axis . . . 43 4.9 The p-v diagram comparing with fitting results . . . . . . . 44 4.9 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.10 NMA CO(1-0) moment zero map overlaid on the CXO image . . . . . 47 4.10 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.11 CXO X-ray spectrum . . . . . . . . . . . . . . . . . . . . . . . 53 4.12 The schematic diagram of outflows and superbubbles in NGC 2146 along the line-of-sight . . . . . . . . . . . . . . . . . . . . 61 4.13 The NMA HCO+ Integrated Intensity Map . . . . . . . . . . 63 4.14 The NMA 3 mm map of NGC 2146 . . . . . . . . . . . . . . . 64 4.15 The NMA 3 mm map overlaid on NMA CO(1-0) map . . . . . 65 4.16 The NMA 3 mm map overlaid on VLA 5 GHz map . . . . . . 66 4.17 The overlap images among the NMA CO(1-0), the CXO soft X-ray, and the NMA 3 mm data . . . . . . 67 5.1 NMA CO(1-0) channel map of NGC 3628 . . . . . . . . . . . 72 5.2 NMA CO(1-0) moment zero and moment one maps of NGC 3628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3 NMA CO(1-0) moment zero map after clockwise rotation of 14 degree . . . 77 5.4 The averaged p-v diagram along the major axis . . . . . . . 78 5.5 The averaged p-v diagram parallel to the major axis . . . . 79 5.6 The averaged p-v diagram along the minor axis . . . . . . . 81 5.7 Smoothed CXO X-ray image after removing point sources . . 82 5.7 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.8 The spatial correlation between the NMA CO(1-0) and the CXO X-ray data . . . . 85 5.8 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.8 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.8 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.9 The CXO X-ray data with the fitted XSPEC model . . . . . . 91 5.9 Continued . . . . . . . . . . . . . . . . . . . . . 92 5.10 Our NMA CO(1-0) p-v diagrams contours marked with the position of superbubbles claimed by Irwin & Sofue (1996) . . . 98 5.11 The integrated intensity maps mark with Irwin's superbubbles . . . . . . . . . 98 5.12 The minor-axis p-v diagram of the superbubble D . . . . . . 99 5.13 The NMA 3 mm emission data . . . . . . . . . . . . . . . . . 101 5.14 The NMA CO(1-0) data overlaid on the NMA 3 mm data . . 102 5.15 The overlap images among the NMA CO(1-0), the CXO soft X-ray, and the NMA 3 mm data . . . . . . . . 103 6.1 The Properties of Molecular Outflows and Superbubbles . . . 110 6.1 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 6.1 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.1 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.1 Continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.2 Correlation between SFR and mass loss rate in starburst region . . . . . 120 6.3 The evolution progress plot . . . . . . . . . . . . . . . . . . . 132 List of Tables 1.1 Physical properties in normal spiral galaxies and starburst galaxies (Kennicutt 1998) . . . . . . . . . . . . . . . . . . . . 3 2.1 The properties of the starburst galaxies . . . . . . . . . . . . 17 4.1 The properties of molecular Superbubbles and the outflow . . 49 4.2 Best-fitting Spectral Models for the CXO Spectrum of NGC 2146 . . . . . . . . . . 55 4.3 The properties of plasma outflow in NGC 2146 . . . . . . . . 56 5.1 Best-fitting Spectral Models for the CXO Spectrum of NGC 3628 . . . . . . . . . . . . 93 5.2 The properties of plasma outflow in NGC 3628 . . . . . . . . 94 6.1 The Properties of Molecular Outflows and Superbubbles . . . 107 6.2 The Coe簣cient of Determination Gamma^2 . . . . . . . . . . . . . . 109 6.3 Starburst Activities in Starburst Regions . . . . . . . . . . . 116 6.4 The Gas Mass Loss through Different Process . . . . . . . . . 117 6.5 The Star Formation Rate . . . . . . . . . . . . . . . . . . . . 119 6.6 The Relation between Molecular Outflow Rate and SFR in Starburst Galaxies . . . . . . 121 6.7 The Return Timescale of Molecular Outflows . . . . . . . . . 126 6.8 Molecular Gas Consumption in Starburst Galaxies . . . . . . 128 6.9 The Evolutional Stages of Starburst Galaxies . . . . . . . . . 130 6.10 The Past and Current Starburst Activities . . . . . . . . . . . 131

    Bibliography
    Anantharamaiah, K. R., Viallefond, F., Mohan, N. R., Goss, W. M., & Zhao, J. H. 2000, ApJ, 537, 613
    Anantharamaiah, K. R. 1998, IAUS, 184, 147A
    Armus, L., Heckman, T. M., Weaver, K. A., & Lehnert, M. D. 1995, ApJ, 445, 666
    Armus, L., Heckman, T. M., & Miley, G. K. 1990, ApJ, 364, 471
    Balzano, V. A. 1983, ApJ, 268, 602B
    Benvenuti, P., Capaccioli, M., & D'Odorico, S. 1975, A&A, 41, 91
    Bicay, M. D., Kojoian, G., Seal, J., Dickinson, D. F., & Malkan, M. A. 1995, ApJS, 98, 369
    Binney, J., & Tremaine, S. 2008, Galactic Dynamics, 2nd Ed. (Princeton University Press)
    Binney, J., & Merrifield M. 1998, Galactic Astronomy (Princeton University Press)
    Binney, J., Gerhard, O. E., Stark, A. A., Bally, J. & Uchida, K. I. 1991, MNRAS, 252, 210
    Boisse, P., Casoli, F., & Combes, F. 1987, A&A, 173, 229
    Bomansa, D. J., van Eymerena, J., Dettmara, R.-J., Weisa, K., & Hoppb, U. 2007, NewAR, 51, 141
    Brand, P. W. J. L., & Zealey, W. J. 1975, A&A, 38, 363B
    Braunsfurth, E. & Feitzinger, J. V. 1983, A&A, 127, 113B
    Cash, W., Charles, P., Bowyer, S., Walter, F., Garmire, G., & Riegler, G. 1980, ApJ, 238L, 71C
    Carroll, B. W., & Ostlie, D. A. 1996, An Introduction to Modern Astrophysics (Addison Wesley Publishing Companry)
    Cecil, G., Bland-Hawthorn, J., & Veilleux, S. 2002, ApJ, 576, 745
    Cecil, G., Bland-Hawthorn, J., Veilleux, S., & Filippenko, A. V. 2001, ApJ, 555, 338
    Charles, P. A., & Seward, F. D. 1995, Exploring the X-ray Universe (Cambridge: Cambridge University Press)
    Chevalier, R. A., & Clegg, A. W. 1985, Nature, 317, 44a
    Chromey, F. R., Elmegreen, D. M., Mandell, A., & McDermott, J. 1998, ApJ, 115, 2331
    Cole, G. H. J., Mundell, C. G., & Pedlar, A. 1998, MNRAS, 300, 656
    Condon, J. J. 1992, ARA&A, 30, 575
    Condon, J. J., Condon, M. A., Gisler, G., & Puschell, J. J. 1982, ApJ, 252, 102
    Condon, J. J. & Yin, Q. F. 1990, ApJ, 357, 97
    Cooper, J. L., Bicknell, G. V., & Sutherland, R. S. 2008, ApJ, 674, 157
    Cox, D. P. & Reynolds, R. J. 1987, ARA&A, 25, 303C
    Dahlem, M., Weaver, K. A., & Heckman, T. M. 1998, ApJS, 118, 401
    Dahlem, M., Heckman, T. M., Fabbiano, G., Lehnert, M. D., & Gilmore, D. 1996, ApJ, 461, 724
    Dekel, A., & Silk, J. 1986, ApJ, 303, 39
    Della Ceca, R., Griffths, R. E., Heckman, T. M., Lehnert, M. D., & Weaver, K. A. 1999, ApJ, 514, 772
    Demoulin, M. H., & Burbidge, E. M. 1970, ApJ, 159, 799D
    Deul, E. R., & den Hartog, R. H. 1990, A&A, 229, 362
    Deutsch, L. K., & Willner, S. P. 1986, ApJ, 306, 11
    Devereux, N. A., & Young, J. S. 1990, ApJ, 350, L25
    Dickey, J. M. & Lockman, F. J. 1990, ARA&A, 28, 215
    Dorfi, E. A. 2004, Ap&SS, 289, 337
    Dosa-Gonzalez, D. 2005, MNRAS, 364, 1304
    Dumke, M., Nieten, Ch., Thuma, G., Wielebinski, R., & Walsh, W. 2001, A&A, 373, 853
    Englmaier, P. & Gerhard, O. 1999, MNRAS, 304, 512E
    Elmegreen B. G. & Elmegreen D. M. 1990, ApJ, 355, 52
    Ferreras, I., & Silk, J. 2000, MNRAS, 316, 786F
    Fichtner, H., Fahr, H. J., & Neutsch, W. 1991, NCimB, 106, 909F
    Fisher, J. R., & Tully, R. B. 1976, A&A, 53, 397
    Garcia-Burillo, S. & Guelin, M. 1995, A&A, 299, 675
    Greenstein, J. L., & Minkowski, R. 1953, ApJ, 118, 1G
    Greve, A., Neininger, N., Sievers, A., & Tarchi, A. 2006, A&A, 459, 441
    Greve, A., Neininger, N., Tarchi, A., & Sievers, A. 2000, A&A, 364, 409
    Golla, G. 1999, A&A, 345, 778
    Handa, T., Sofue, Y., Ikeuchi, S., Kawabe, R., & Ishizuki, S. 1992, PASJ, 44, L227
    Handa, T., Sofue, Y., Nakai, N., Hirabayashi, H., & Inoue, M. 1987, PASJ, 39, 709H
    Hansen, C. J. & Kawaler, S. D. 1994, Stellar Interiors: Physical Principles, Structure, and Evolution. Birkh?auser
    Heckman T. M. 2004, Starburst galaxies (Encyclopedia of Astronomy and Astrophysics: Institure of Physics Publishing)
    Heckman T. M. 1997, RMxAC, 6, 156H
    Heckman T. M., Armus, L., & Miley, G. K. 1990, ApJS, 74, 833
    Hernquist L. 1989, Nature, 340, 687
    Hindman, J. V. 1967, AuJPh, 20, 147
    Ho, L. C., Filippenko, A. V., Sargent, W. L. W. 1997, ApJ, 487, 591H
    Hota, A. & Saikia, D. J. 2006, MNRAS, 371, 945
    Hot, A., & Saikia, D. J. 2005, MNRAS, 356, 998
    Hoyle, F., & Fowler, W. A. 1963, MNRAS, 125, 169H
    Huchra, J. B., Neff, S. G., Stanford, S. A., Lo, E., & Unger S. W. 1990, AJ, 100, 60
    Hutchings, J. B., Neff, S. G., Stanford, S. A., Lo, E., & Unger S. W. 1990, AJ, 100, 60
    Inui, T., Matsumoto, H., Tsuru, T. G., Koyama, K., Matsushita, S., Peck, A. B., & Tarchi, A. 2005, PASJ, 57,135
    Irwin, J. A. & Sofue, Y. 1996, ApJ, 464, 738
    Izotova, Irina, Parnovsky, Sergei, & Izotob, Yuri 2000, Nature, 44, 283
    Jackson, J. M., & Ho, P. T. P. 1988, ApJ, 324, L5
    Joseph, R. D. & Wright, G. S. 1985, MNRAS, 214, 87J
    Jura, M., Hobbs, R. W., & Maran, S. P. 1978, AJ, 83, 153
    Kalberla, P. M. W., Burton, W. B., Hartmann, Dap, Arnal, E. M., Bajaja, E., Morras, R., & Poppel, W. G. L. 2005, A&A, 440, 775.
    Karlsson, E., Aalto, S., & Bergman, P. 2004, ASP Conf. Ser., 320, 158
    Kenninutt, R. C., Jr. 1998, ARA&A, 36, 189
    Larson, R. B. 1974, MNRAS, 169, 229
    Larson, R. B., & Tinsley, B. M. 1978, ApJ, 219, 46
    Lehnert, M. D., Heckman, T. M., & Weaver, K. A. 1999, ApJ, 523, 575
    Lehnert, M. D., & Heckman, T. M. 1996, ApJ, 462, 651
    Leitherer, C. 1998, ASPC, 142, 61
    Leon, S., Eckart, A., Laine, S., Kotilainen, J. K., Schinnerer, E., Lee, S.-W., Krips, M., Reunanen, J., & Scharwaechter, J. 2007, A&A, 473, 747
    Lynds, C. R. & Sandage, A. R. 1963, AJ, 68R, 284L
    Maeder, A. & Conti, P. S. 1994, ARA&A, 32, 227
    Marcolini, A., Strickland, D. K., D'Ercole, A., Heckman, T. M., & Hoopes, C. G. 2005, MNRAS, 362, 626
    Martin, C. L. 1999, ApJ, 513, 156
    Martin, C. L. 1998, ApJ, 506, 222
    Mathews, W. G. 1989, AJ, 97, 42
    Matsushita, S., Kawabe, R., Kohno, K., Matsumoto, H., Tsuru, T. G., & Vila-Vilaro, B. 2005, ApJ, 618, 712
    Matsushita, S., Kawabe, R., Matsumoto, H., Tsuru, T. G., Kohno, K., Morita, K.-I., Okumura, S. K., & Vila-Vilar繞o, B. 2000, ApJ,545, L107
    Mayall, N. U. 1962, Science, 137, 3524
    Mazzarella, J. M., Bothun, G. D., & Boroson, T. A. 1991, AJ, 101, 2034
    Mazzarella, J. M., & Balzano, V. A. 1986, ApJS, 62, 751
    McCray, R., & Kafatos, M. 1987, ApJ, 317, 190
    Moore, D. W., & Spiegel, E. A. 1968, ApJ, 154, 863M
    Murray, N., Quataert, E., & Thompson, T. A. 2005, ApJ, 618, 569
    Nakai, N., Hayashi, M., Handa, T., Sofue, Y., Hasegawa, T., & Sasaki, M. 1987, PASJ, 39, 685
    Neininger, N., Guelin, M., Klein, U., Garcia-Burillo, S., & Wielebinski, R. 1998, A&A, 339, 737
    Noguchi, M. 1988, A&A, 203, 259
    Noguchi, M. 1991, MNRAS, 251, 260N
    Oey, M. S. 2004, Ap&SS, 289, 269
    Okumura, S. K., et al. 2000, PASJ, 52, 393
    Ostriker, J., & Cowie, L. 1981, ApJ, 243, L127
    Ptak, A., Serlemitsos, P., Yaqoob, T., & Mushotzky, R. 1999, ApJS, 120, 179
    Rand, R. J. 2000, ApJ, 535, 663
    Rose, W. K. 1998, Advanced Stellar Astrophysics (Cambridge: Cambridge University Press)
    Rossa, J., & Dettmar, R.-J. 2003, A&A, 406, 493R
    Rots, A. H. 1978, AJ, 83, 219R
    Rubin, R. H. 1968, ApJ, 154, 391
    Rupke, D. S., Veilleux, S., & Sanders, D. B. 2005, ApJS, 160, 115
    Sakai, S., & Madore, B. F. 2001, ApJ, 555, 280
    Sakamoto, K., Ho, P. T. P., Iono, D., Keto, E. R., Mao, R.-Q., Matsushita, S., Peck, A. B., Wiedner, M. C., Wilner, D. J., & Zhao, J.-H. 2006, ApJ, 636, 685
    Sakamoto, K., Okumura, S. K., Ishizuki, S., & Scoville, N. Z. 1999, ApJS, 124, 403S
    Sakamoto, K., Okumura, S., Minezaki, T., Kobayashi, Y., & Wada, K. 1995, AJ, 110, 2075
    Sandage, A. & Tammann, G. A., 1975, ApJ, 196, 313S Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ,
    126, 1607
    Sanders, D. B., Mazzarella, J. M., Kim, D.-C., Surace, J. A., & Soifer, B. T. 2003, AJ, 126, 1607
    Sanders, D. B., & Mirabel, I. F. 1996, ARA&A, 34, 749
    Sanders, D. B., Soifer, B. T., Elias, J. H., Madore, B. F., Matthews, K., Neugebauer, G.,& Scoville, N. Z. 1988, ApJ, 325, 74S
    Sanders, R. H., & Prendergast, K. H. 1974, ApJ, 188, 489S
    Sarazin, C. L. 1988, X-ray Emission from Clusters of Galaxies (Cambridge Astrophysics Series, Cambridge: Cambridge University Press)
    Sargent, W. L. W., $ Searle, L. 1970, ApJ, 162L, 155S
    Searle, L., Sargent, W. L. W., Bagnuolo, W. G. 1973, ApJ, 179, 427S
    Schinnerer, E., Eckart, A., & Boller, TH. 2000, ApJ, 545, 205
    Schuster, K. F., Kramer, C., Hitschfeld, M., Garcia-Burillo, S., & Mookerjea, B. 2007, A&A, 461, 143S
    Shklovskii, I. S. 1960, SvA, 4, 355
    Shopbell, P., L., & Bland-Hawthorn, J. 1998, ApJ, 493, 129
    Sofue, Y., & Handa, T. 1984, Nature, 310, 568
    Spiegel, M. R., & Liu, J. 2009, Mathematical Handbood of Formulas and Tables, 2nd Ed. (McGraw-Hill Companies Inc.)
    Strickland, D. K., Heckman, T. M., Colbert, E. J. M., Hoopes, C. G., & Weaver, K. A. 2004, ApJ, 606, 829
    Strickland, D. K., Heckman, T. M., Weaver, K. A., Hoopes, C. G., & Dahlem, M. 2002, ApJ, 568, 689
    Strickland, D. K., Colbert, E. J. M., & Heckman, T. M. 2001, ApJ, 560, 707
    Strickland, D. K., Ponman, T. J., & Stevens, I. R. 1997, A&A, 320, 378S
    Strickland, D. K., & Stevens, I. R. 2000, MNRAS, 314, 511
    Sunada, K., Kawabe, R., & Inatani, J. 1994, Int. J. Infrared Millimeter Waves, 14, 1251
    Taramopoulos, A., Payne, H., & Briggs, F. H. 2001, A&A, 365, 360
    Tarchi, A., Greve, A., Peck, A. B., Neininger, N., Wills, K. A., Pedlar, A., & Klein, U. 2004, MNRAS, 351, 339
    Tarchi, A., Neininger, N., Greve, A., Klein, U., Garrington, S. T., Muxlow, T. W. B., Pedler, A., & Glendenning, B. E. 2000, A&A, 358, 95
    Tenorio-Tagle, G., & Bodenheimer, P. 1988, ARA&A, 26, 145
    Tinsley, B. M. 1968, ApJ, 151, 547T
    Thronson, H. A., Jr., Wilton, C., & Ksir, A. 1991, MNRAS, 252, 543
    Tomisaka, K., & Ikeuchi, S. 1988, ApJ, 330, 695
    Tomisaka, K., & Ikeuchi, S. 1986, PASJ, 38, 697T
    Carlstrom, J. E., & Kronberg, P. P. 1991, ApJ, 366, 422C
    Combes, F. 1992, Physics of Nearby Galaxies: Nature or Nurture?, ed. Trinh, X. T., Balkowski, C., & van Tran, J. T., pp.36. (Edition Fronti繕eres)
    Tsai, A.-L., Matsushita, S., Nakanishi, K., Kohno, K., Kawabe, R., Inui, T., Matsumoto, H., Tsuru, T. G., Peck, A. B., & Tarchi, A. 2009, PASJ, 61, 237
    Tomisaka, K. & Ikeuchi, S. 1988, ApJ, 330, 695
    Tsutsumi, T., Morita, K.-I., & Umeyama, S. 1997, ASP Conf. Ser. 125, Astronomical Data Analysis Software and Systems VI, ed. G. Hunt & H.
    E. Payne (San Francisco: ASP), 50
    Tully, R. B. 1988, Nearby Galaxeis Catalog (Cambridge: Cambridge Univer-sity Press)
    van Buren, ., & Greenhouse, . 1994, ApJ, 431, 640
    van der Kruit, P. C. 1971, A&A, 13, 405V
    van Woerden, H., Rougoor, G. W., & Oort, J. H. 1957, CRAS, 244, 1691V
    Veilleux, S., Rupke, D. S. N., & Swaters, R. 2009, ApJ, 700, L149
    Veilleux, S., Cecil, G., & Bland-Hawthorn, J. 2005, ARA&A, 43, 769
    Veilleux, S., Cecil, G., Bland-Hawthorn, J., Tully, R. B., Filippenko, A. V., & Sargent, W. L. W. 1994, ApJ, 433, 48
    Viallefond, F., Goss, W. M., & Allen, R. J. 1982, A&A, 115, 373
    Viallefond, Allen, R. J., & Goss, W. M. 1981, A&A, 104, 127
    Wada, K. 1994, PASJ, 46, 165
    Walter, F., Dahlem, M., & Lisenfeld, U. 2004, ApJ, 606, 258
    Walter, F., Weiss, A., & Scoville, N. 2002, ApJ, 580L, 21W
    Weaver, R., McCray, R., & Castor, J. 1977, ApJ, 218, 377
    Weiss, A., Neininger, N., Huttemeister,?S., & Klein U. 2001, A&A, 365, 571
    Weiss, A., Walter, F., Neininger, N., & Klein, U. 1999, A&A, 345, L23
    Westerlund, B. E., & Mathewson, D. S. 1966, MNRAS, 131, 371W Wilding, T., Alexander, P., & Green, D. A. 1993, MNRAS, 606, 258
    Wilding, T., Alexander, P., & Green, D. A. 1993, MNRAS, 606, 258
    Wills, K. A., Redman, M. P., Muxlow, T. W. B., & Pedlar, A. 1999, MNRAS, 309, 395
    Yokoo, T.; Fukue, J.; Taniguchi, Y. 1993, PASJ, 45, 687
    Young, J. S., & Scoville, N. Z. 1991, ARA&A, 29, 581
    Young, J. S., Claussen, M. J., Kleinmann, S. G., Rubin, V. C., & Scoville, N. 1988, ApJ, 331, L81
    Young, J. S., & Scoville, N. Z. 1984, ApJ, 287, 153Y
    Young, J. S., Tacconi, L. J, & Scoville, N. Z. 1983, ApJ, 269, 136

    下載圖示
    QR CODE