研究生: |
關口育正 |
---|---|
論文名稱: |
利用田口法最佳化鐵酸鉍摻雜鈮之MFIS電容器 The Optimization of Nb-doped BiFeO3 Film in MFIS Capacitors Using Taguchi Method |
指導教授: | 劉傳璽 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 田口法 、鐵酸鉍 、MFIS電容器 、記憶窗寬 |
英文關鍵詞: | Taguchi method, BiFeO3, MFIS capacitors, memory window |
論文種類: | 學術論文 |
相關次數: | 點閱:204 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是在探討MFIS(金屬/鐵電/絕緣體/半導體)結構之電容器。鐵電材料為鈣鈦礦結構所產生的極化特性及極化殘留特性,而適合當作記憶體材料。近幾年來鐵酸鉍為引起關注的鐵電材料,它具有高居禮溫度(約850-860 ℃)及高尼爾溫度(約370-397 ℃)、高的極化效應的優點,但鐵酸鉍缺點為具有很大的漏電流,為了降低漏電流,利用鐵酸鉍薄膜摻雜鈮的方式來解決。
本研究的目標為利用田口法尋找在製造MFIS電容器(鋁/鐵酸鉍摻雜鈮/氧化鉿/p型矽基板)中之最佳製程參數組合。探討製程參數對於漏電流及記憶窗寬之影響。以訊雜比公式,計算電特性量測(I-V與C-V曲線)所得到的數據。此分析結果在漏電流與記憶窗寬都得到一樣的趨勢。我們得到的最佳參數組合退火溫度為700 ℃、摻雜鈮的直流濺鍍瓦數為5 W、氬氧比為15。物理特性量(XRD)分析結果,退火溫度在700 ℃時,可看鈮離子有取代鐵離子,此表示摻雜鈮會減少氧空缺。雖然摻雜鈮的濃度越多越能取代鐵離子,但鈮離子過多也會導致漏電流的增加與記憶窗寬的縮小。
This study is to investigate MFIS (Metal/Ferroelectric/Insulator/Semiconductor) structure capacitors. Ferroelectric materials have a Perovskite structure. It generated ferroelectric polarization and remnant polarization. Those properties are suitable for nonvolatile memory materials. BiFeO3 is one of the Ferroelectric materials that have been attracted to attention recently. Although BiFeO3 possesses many merits such as high Curie temperature (about 850-860 ℃), high Neel temperature (about 370-397 ℃) and large remnant polarization, it possesses demerit of large leakage current. In order to improve this problem, we resolved it in a way of Nb-doped BiFeO3 thin film.
The purpose of this study is to find the optimum combination of factors in the manufacture of MFIS capacitors (Al/BiFeO3+Nb/HfO2/p-Si substrate) using Taguchi Method, and then discuss the effects of process conditions on leakage current and memory window. Based on the electrical property measurements (I-V and C-V), SNR (S/N ratio) was calculated. As a Result, the leakage current and the memory window indicated same trends. We obtained the optimal recipe which was 700℃ for RTA temperature, 5 W for DC power of Nb sputtering and 15 for Argon-to-Oxygen ratio. According to physical characterization (XRD) analysis results, Nb ions replaced iron ions at annealing temperature at 700 ℃, which this means that oxygen vacancies were reduced by Nb-doping. Although the more Nb-doping, the more Nb ions replace Fe ions, but excessive Nb-doping induces the increase of the leakage current and reduces the memory widow.
[1]J. L. Moll and Y. Tarui, “A New Solid State Memory Resistor”, IEEE Transactions on Electron Devices, Vol. 10, pp. 338, 1963.
[2]S. Y. Wu, “A New Ferroelectric Memory Device, Metal Ferroelectric Semiconductor Transistor”, IEEE Transactions on Electron Devices, Vol. 21, No. 8, pp. 499, 1974.
[3]李輝煌,田口方法-品質設計的原理與實務,高立圖書有限公司,2006年。
[4]吳復強,產品穩健設計-田口方法之原理與應用,全威圖書有限公司,2005年。
[5]張季娜、羅仕勇,田口式品質工程導論,中華民國品質管制學會,1993年。
[6]奥山雅則, 機能性材料と電子デバイス応用の現状と展望, パナソニック技報, 第55巻2号, pp. 33-37, 2009。
[7]C. Kittel, Introduction to Solid State Physics, 7th ed., John Wily &Sons, 1996.
[8]W. F. Smith, Foundations of Materials Science and Engineering, 3rd ed., McGraw-Hill, 2004.
[9]L. H. Van Vlack, Elements of Materials Science and Engineering, 4th ed., Addison-Wesley, 1980.
[10]鄭晃忠、劉傳璽,新世代積體電路製程技術,東華書局,2011年。
[11]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., Wiley, 2007.
[12]H. Ishiwara, “Current Status and Prospects of FET-type Ferroelectric Memories”, Journal of the Institute, Vol. 88, pp. 266-271, 2005.
[13]C. T. Black, C. Farrell and T. J. Licata, “Suppression of Ferroelectric Polarization by An Adjustable Depolarization Field”, Applied Physics Letters, Vol. 71, pp. 2041-2043, 1997.
[14]M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda and M. Okuyama, “Analysis and Improvement of Retention Time of Memorized State of Metal-Ferroelectric-Insulator-Semiconductor Structure for Ferroelectric Gate FET Memory”, Japanese Journal of Applied Physics, Vol. 40, pp. 2923-2927, 2001.
[15]T. P. Ma and J. P. Hang, “Why is Nonvolatile Ferroelectric Memory Field-Effect Transistor Still Elusive?”, IEEE Electron Device Letters, Vol. 23, pp. 386-388, 2002.
[16]J. Robertson, “High Dielectric Constant Gate Oxides for Metal Oxide Si Transistor”, Reports on Progress in Physics, Vol. 69, pp. 327-396, 2006.
[17]A. Z. Simoes, R. F. Pianno, E. C. Aguiar, E. Long and J. A. Varela, “Effect of Niobium Dopant on Fatigue Characteristics BiFeO3 Thin Films Grown on Pt Electrodes”, Journal of Alloys and Compounds, Vol. 479, pp. 274-279, 2009.
[18]J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M.Rade, M. Wuttig and R. Ramesh, “Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures”, Science, Vol. 299, pp. 1719-1722, 2003.
[19]P. C. Juan, J. H. Lu and M. W. Lu, “Improvement on Reliability Properties of Metal-Ferroelectric (BiFeO3)-Insulator (HfO2)-Semiconductor Structures Fabricated by Oxygen-Incorporated Magnetron Sputtering”, Journal of The Electrochemical Society, Vol. 155, pp. 991-994, 2008.
[20]H. Uchida, R. Ueno, H. Funakubo and S. Koda, “Crystal Structure and Ferroelectric Properties of Rare-earth Substituted BiFeO3 Thin Films”, Journal of Applied Physics, Vol. 100, pp. 014106-014106-9, 2006.
[21]F. Z. Huang, X. M. Lu, W. W. Lin, X. M. Wu, Y. Kan and J. S. Zhu, “Effect of Nd Dopant on Magnetic and Electric Properties of BiFeO3 Thin Films Prepared by Metal Organic Deposition Method”, Applied Physics Letters, Vol. 89, pp. 242914-242914-3, 2006.
[22]B. F. Yu, M. Y. Li, Z. Q. Hu, L. Pei, D. Y. Guo, X. Z. Zhao and S. X. Dong, “Enhanced Multiferroic Properties of The High-valence Pr Doped BiFeO3 Thin Film”, Applied Physics Letters, Vol. 93, pp. 182909-1-3, 2008.
[23]X. D. Qi, J. Dho, R. Tomov, M. G. Blamire and J. L. M. Driscoll, “Greatly Reduced Leakage Current and Conduction Mechanism in Aliovalent-ion-doped BiFeO3”, Applied Physics Letters, Vol. 86, pp. 062903-1-3, 2005.
[24]H. Naganuma, J. Miura and S. Okamura, “Ferroelectric, Electrical and Magnetic Properties of Cr, Mn, Co, Ni, Cu Added Polycrystalline BiFeO3 Films”, Applied Physics Letters, Vol. 93, pp. 052901-1-3, 2008.
[25]Z. X. Cheng, X. L. Wang, S. X. Dou, H. Kimura and K. Ozawa, “Improved Ferroelectric Properties in Multiferroic BiFeO3 Thin Films Through La and Nb Codoping”, Physical Review B, Vol. 77, pp. 092101-1-4, 2008.
[26]麻蒔立男,薄膜作成の基礎,第4版,日刊工業新聞社,2005年。
[27]M. Ohring, Materials Science of Thin Films-Deposition & Structure, Academic Press, 2002.
[28]汪建民,材料分析,中國材料科學學會,1998年。