研究生: |
蔣妮霓 Chiang, Ni-Ni |
---|---|
論文名稱: |
以促進BDNF-TRKB訊息傳遞路徑作為阿茲海默氏症治療策略的ΔK280 TauRD-DsRed SH-SY5Y細胞模式分析 Promoting BDNF-TRKB signaling as a therapeutic strategy for Alzheimer’s disease treatment using ΔK280 TauRD-DsRed SH-SY5Y cell model |
指導教授: |
李桂楨
Lee, Guey-Jen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 阿茲海默氏症 、腦源性神經滋養因子 、受體型酪胺酸激酶B 、TRKB促效劑 、Tau細胞模式 |
英文關鍵詞: | Alzheimer’s disease, BDNF, TRKB, TRKB agonist, Tau cell model |
DOI URL: | http://doi.org/10.6345/NTNU202001383 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿茲海默氏症(Alzheimer’s disease, AD)是一種漸進性神經退行性疾病,最常見的臨床症狀是記憶力衰退及認知功能下降。阿茲海默氏症的病理學特徵為大腦中含有Amyloid β (Aβ)聚集形成的類澱粉斑塊,以及過度磷酸化的Tau蛋白形成的神經纖維糾結(Neurofibrillary tangle, NFT)。神經營養因子腦源性神經滋養因子(Brain-derived neurotrophic factor, BDNF)結合在受體型酪胺酸激酶B (Tropomyosin-related kinase B, TRKB)上時,會活化下游訊息傳遞路徑,最終磷酸化環磷腺苷效應元件結合蛋白1 (cAMP responsive element binding protein 1, CREB),來促進神經元存活和神經可塑性。臨床研究發現阿茲海默氏症病人的海馬迴及皮層中,BDNF蛋白或mRNA的表現量降低。小分子TRKB促效劑7,8-DHF (7,8-二羥基黃酮)可改善AD小鼠認知功能且抑制海馬迴突觸喪失,顯示促進TRKB訊息傳遞,為阿茲海默氏症有潛能的治療策略。本研究使用誘導表現ΔK280 TauRD-DsRed的人類SH-SY5Y細胞,檢測7,8-DHF及Wogonin (黃芩素)、DHFS-1 (即Quercetin槲皮素)、DHFS-2、Kaempferol (山奈酚)、Apigenin (芹菜素)等類似物的神經保護作用。在測試的黃酮類化合物中,7,8-DHF、DHFS-1、Apigenin可增加表現ΔK280 TauRD-DsRed細胞中,DsRed的螢光通量。處理7,8-DHF、DHFS-1、Apigenin可以使細胞內熱休克蛋白HSPB1表現增加,並增加ΔK280 TauRD-DsRed融合蛋白的可溶性,但不影響融合基因的mRNA表現量。另外, 7,8-DHF、DHFS-1、Apigenin的處理,可顯著降低內活性氧化物的生成及凋亡蛋白酶1活性,並增加NRF2轉錄因子的表現及促進神經突生長,但僅Apigenin可降低乙醯膽鹼酯酶活性。進一步的TRKB訊息傳遞路徑分析顯示,處理7,8-DHF、DHFS-1、Apigenin後,ΔK280 TauRD-DsRed細胞內p-TRKB (Y817)、p-ERK (T202/Y204)、p-CREB (S133)、BCL2蛋白表現顯著增加,並伴隨著凋亡調節蛋白BAX的顯著降低。以TRKB的RNA干擾(RNAi)作用靜默TRKB基因表現後,可抑制7,8-DHF、DHFS-1、Apigenin的促進神經突生長。本7,8-DHF及其類似物做為TRKB促效劑的研究,可提供阿茲海默氏症新的治療策略。
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The most common clinical symptoms of AD are memory loss and cognitive decline. Pathologically AD is characterized by the presence of amyloid β (Aβ) aggregates in the brain (amyloid plaques) and neurofibrillary tangles (NFT) formed by hyperphosphorylated Tau protein. Neurotrophic factor brain-derived neurotrophic factor (BDNF) binds to tropomyosin-related kinase B (TRKB) to activate the downstream signaling pathway, which ultimately phosphorylates cAMP responsive element binding protein 1 (CREB) and promotes neuronal survival and neuroplasticity. Clinical studies have indicated that the expression levels of BDNF protein or mRNA are decreased in the hippocampus and cortex of AD brains. 7,8-Dihydroxyflavone (7,8-DHF), a small-molecule TRKB agonist, improved the cognitive function and inhibited the hippocampal synaptic loss in AD mice. The study demonstrated that promoting TRKB signaling is a potential treatment strategy for AD. In this study, 7,8-DHF and analogues compounds Wogonin, DHFS-1, DHFS-2, Kaempferol, Apigenin were examined for neuroprotective effects using human SH-SY5Y cells expressing ΔK280 TauRD-DsRed. Among the tested flavones, 7,8-DHF, DHFS-1 and Apigenin increased luminous flux of DsRed in ΔK280 TauRD-DsRed-expressing cells. Treatment of 7,8-DHF, DHFS-1 and Apigenin increased heat shock protein family B (small) member 1 (HSPB1) expression and ΔK280 TauRD-DsRed fusion protein solubility, without affecting fusion mRNA expression. In addition, 7,8-DHF, DHFS-1 and Apigenin significantly reduced reactive oxygen species (ROS) production and caspase 1 activity, and increased transcription factor NRF2 expression and promoted neurite outgrowth, whereas only Apigenin reduced acetylcholinesterase activity in ΔK280 TauRD-DsRed-expressing SH-SY5Y cells. Studies of TRKB signaling revealed that treatment of 7,8-DHF, DHFS-1 and Apigenin significantly increased the expression of p-TRKB (Y817), p-ERK (T202/Y204), p-CREB (S133) and BCL2, accompanying with reduced BAX expression in ΔK280 TauRD-DsRed cells. Furthermore, the neurite outgrowth promotion effect of 7,8-DHF, DHFS-1 and Apigenin was counteracted by knockdown of TRKB using RNA interference (RNAi). The study of 7,8-DHF and analogous compounds as TRKB agonists may provide new treatment strategies for AD.
陳炫江. 2013. 以tau聚集為目標的阿茲海默氏症治療策略. 國立臺灣師範大學生命科學系碩士論文.
鄧伃珊. 2019. 利用CRE motifs報導細胞和Aβ-GFP細胞篩選BDNF受體TRKB的小分子促效劑做為阿茲海默症治療策略. 國立臺灣師範大學生命科學系碩士論文.
Alberini, C.M. 2009. Transcription factors in long-term memory and synaptic plasticity. Physiol Rev. 89:121-145.
Almansoub, H.A.M.M., Tang, H., Wu, Y., Wang, D.Q., Mahaman, Y.A.R., Wei, N., Almansob, Y.A.M., He, W., and Liu, D. 2019. Tau abnormalities and the potential therapy in Alzheimer’s disease. J Alzheimers Dis. 67:13-33.
Banerjee, T., Van der Vliet, A., and Ziboh, V.A. 2002. Downregulation of COX-2 and iNOS by amentoflavone and quercetin in A549 human lung adenocarcinoma cell line. Prostaglandins Leukot Essent Fatty Acids. 66:485-492.
Bancher, C., Brunner, C., Lassmann, H., Budka, H., Jellinger, K., Wiche, G., Seitelberger, F., Grundke-Iqbal, I., Iqbal, K., and Wisniewski, H.M. 1989. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res. 477:90-99.
Barghorn, S., Zheng-Fischhofer, Q., Ackmann, M., Biernat, J., von Bergen, M., Mandelkow, E.M., and Mandelkow, E. 2000. Structure, microtubule interactions, and paired helical filament aggregation by tau mutants of frontotemporal dementias. Biochemistry. 39:11714-11721.
Beg, T., Jyoti, S., Naz, F., Rahul., Ali, F., Ali, S.K., Reyad, A.M., and Siddique, Y.H. 2018. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol Disord Drug Targets. 17:421-429.
Berchtold, N.C., and Cotman, C.W. 1998. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging. 19:173-189.
Bertram, L., Lill, C.M., and Tanzi, R.E. 2010. The genetics of Alzheimer disease: back to the future. Neuron. 68:270-281.
Binder, L.I., Frankfurter, A., and Rebhun, L.I. 1985. The distribution of tau in the mammalian central nervous system. J. Cell Biol. 101:1371-1378.
Birks, J.S., and Grimley Evans, J. 2015. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev. 4:CD001191.
Blennow, K., De Leon, M.J., and Zetterberg, H. 2006. Alzheimer’s disease. Lancet. 368:387-403.
Broise, L.H., Gottschalk, A.R., Quintáns, J., and Thompson, C.B. 1995. Bcl-2 and Bcl-2-related proteins in apoptosis regulation. Curr Top Microbiol Immunol. 200:107-121.
Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 96:857-868.
Brunet, A., Datta, S.R., and Greenberg, M.E. 2001. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 11:297-305.
Burns, A., and Iliffe, S. 2009. Alzheimer’s disease. BMJ. 338:b158.
Cai, Y. Z., Sun, M., Xing, J., Luo, Q., and Corke, H. 2006. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 78:2872-2888.
Caltagirone, S., Rossi, C., Poggi, A., Ranelletti, F.O., Natali, P.G., Brunetti, M., Aiello, F.B., and Piantelli, M. 2000. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int. J. Cancer. 87:595-600.
Chang, K.H., Lin, C.H., Chen, H.C., Huang, H.Y., Chen, S.L., Lin, T.H., Ramesh, C., Huang, C.C., Fung, H.C., Wu, Y.R., Huang, H.J., Lee-Chen, G.J., Hsieh-Li, H.M., and Yao, C.F. 2017. The potential of indole/indolylquinoline compounds in tau misfolding reduction by enhancement of HSPB1. CNS Neurosci Ther. 23:45-56.
Chen, X.M., Bai, Y., Zhong, Y.J., Xie, X.L., Long, H.W., Yang, Y.Y., Wu, S.G., Jia, Q., and Wang, X.H. 2013. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. PLoS One. 8:e79201.
Chen, C., Wang, Z., Zhang, Z., Liu, X., Kang, S.S., Zhang, Y., and Ye, K. 2018. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc Natl Acad Sci USA. 115:578-583.
Christen, Y. 2000. Oxidative stress and Alzheimer disease. Am J Clin Nutr. 71:621S-629S.
Chuang, C.M., Monie, A., Wu, A., and Hung, C.F. 2009. Combination of apigenin treatment with therapeutic HPV DNA vaccination generates enhanced therapeutic antitumor effects. J. Biomed. Sci. 16:49.
Cripps, D., Thomas, S.N., Jeng, Y., Yang, F., Davies, P., and Yang, A.J. 2006. Alzheimer disease-specific conformation of hyperphosphorylated paired helical filament-Tau is polyubiquitinated through Lys-48 Lys-11 and Lys-6 ubiquitin conjugation. J Biol Chem. 281:10825-10838.
Croll, S.D., IP, N.Y., Lindsay R.M., and Wieqand, S.J. 1998. Expression of BDNF and TrkB as a function of age and cognitive performance. Brain Res. 812:200-208.
Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M., and Hemmings, B.A. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378:785-789.
Cuadrado, A. 2015. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/β-TrCP. Free Radic Biol Med. 88:147-157.
Darbandi, N., Ramezani, M., Khodagholi, F., and Noori, M. 2016. Kaempferol promotes memory retention and density of hippocampal CA1 neurons in intra-cerebroventricular STZ-induced experimental AD model in Wistar rats. Biologija. 62:157-168.
Davies, P., and Maloney, A.J., 1976. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 2:1403.
de Pascual-Teresa, S., Johnston, K.L., DuPont, M.S., O’Leary, K.A., Needs, P.W., Morgan, L.M., Clifford, M.N., Bao, Y., and Williamson, G. 2004. Quercetin metabolites downregulate cyclooxygenase-2 transcription in human lymphocytes ex vivo but not in vivo. J Nutr. 134:552-557.
Desjardins, P., and Ledoux, S. 1998. Expression of ced-3 and ced-9 homologs in Alzheimer’s disease cerebral cortex. Neurosci Lett. 244:69-72.
Dewson, G., and Kluck, R.M. 2009. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci. 122:2801-2808.
Doody, R.S. 1999. Clinical benefits of a new piperidine-class AChE inhibitor. Eur Neuropsychopharmacol. 9:69-77.
Dourado, N.S., Souza, C.D.S., de Almeida, M.M.A., Bispo da Silva, A., Dos Santos, B.L., Silva, V.D.A., De Assis, A.M., da Silva, J.S., Souza, D.O., Costa, M.F.D., Butt, A.M., and Costa, S.L. 2020. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. Front Aging Neurosci. 12:119.
Durany, N., Michel, T., Kurt, J., Cruz-Sánchez, F.F., Cervós-Navarro, J., and Riederer, P. 2000. Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci. 18:807-813.
Dyson, H.J., and Wright, P.E. 2016. Role of intrinsic protein disorder in the function and interactions of the transcriptional coactivators CREB-binding protein (CBP) and p300. J Biol Chem. 291:6714-6722.
Enz, A., Amstutz, R., Boddeke, H., Gmelin, G., and Malanowski, J. 1993. Brain selective inhibition of acetylcholinesterase: a novel approach to therapy for Alzheimer’s disease. Prog Brain Res. 98:431-438.
Ercan-Herbst, E., Ehrig, J., Schöndorf, D.C., Behrendt, A., Klaus, B., Gomez Ramos, B., Prat Oriol, N., Weber, C., and Ehrnhoefer, D.E. 2019. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer’s disease brain. Acta Neuropathol Commun. 7:192.
Fiorani, M., Guidarelli, A., Blasa, M., Azzolini, C., Candiracci, M., Piatti, E., and Cantoni, O. 2010. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. J Nutr Biochem. 21:397-404.
Friedhoff, P., Schneider, A., Mandelkow, E.M., and Mandelkow, E. 1998. Rapid assembly of Alzheimer-like paired helical filaments from microtubule-associated protein tau monitored by fluorescence in solution. Biochemistry. 37:10223-10230.
Gallo, G., Ernst, A.F., McLoon, S.C., and Letourneau, P.C. 2002. Transient PKA activity is required for initiation but not maintenance of BDNF-mediated protection from nitric oxide-induced growth-cone collapse. J Neurosci. 22:5016-5023.
Gao, L., Tian, M., Zhao, H.Y., Xu, Q.Q., Huang, Y.M., Si, Q.C., Tian, Q., Wu, Q.M., Hu, X.M., Sun, L.B., McClintock, S.M., and Zeng, Y. 2016. TrkB activation by 7,8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer’s disease. J Neurochem. 136:620-636.
Gardai, S.J., Hildeman, D.A., Frankel, S.K., Whitlock, B.B., Frasch, S.C., Borregaard, B., Marrack, P., Bratton, D.L., and Henson, P.M. 2004. Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem. 279:21085-21095.
Gilley, J., Coffer, P.J., and Ham, J. 2003. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol. 162:613-622.
Goedert, M., Spillantini, M.G., Jakes, R., Rutherford, D., and Crowther, R.A. 1989. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron. 3:519-526.
Goedert, M., and Jakes, R. 1990. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J. 9:4225-4230.
Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. 1986. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 83:4913-4917.
Havasi, A., Li, Z., Wang, Z., Martin, J.L., Botla, V., Ruchalski, K., Schwartz, J.H., and Borkan, S.C. 2008. Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem. 283:12305-12313.
Himmler, A., Drechsel, D., Kirschner, M.W., and Martin, D.W., Jr. 1989. Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol. 9:1381-1388.
Hock, C., Heese, K., Hulette, C., Rosenberg, C., and Otten, U. 2000. Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol. 57:846-851.
Huang, E.J., and Reichardt, L.F. 2001. Neurotrophins: roles in neuronal development and function. Annu Rev Neurosci. 24:677-736.
Huang, E.J., and Reichardt, L.F. 2003. Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem. 72:609-642.
Iqbal, K., Liu, F., Gong, C.X., and Grundke-Iqbal, I. 2010. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 78:656-664.
Janesick, A., Wu, S.C., and Blumberg, B. 2015. Retinoic acid signaling and neuronal differentiation. Cell Mol Life Sci. 72:1559-1576.
Jang, S.W., Liu, X., Yepes, M., Shepherd, K.R., Miller, G.W., Liu, Y., Wilson, W.D., Xiao, G., Blanchi, B., Sun, Y.E., and Ye, K. 2010. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci USA. 107:2687-2692.
Je, H.S., Yang, F., Ji, Y., Nagappan, G., Hempstead, B.L., and Lu, B. 2012. Role of pro-brain-derived neurotrophic factor (proBDNF) to mature BDNF conversion in activity-dependent competition at developing neuromuscular synapses. Proc Natl Acad Sci USA. 109:15924-15929.
Jiang, W., Luo, T., Li, S., Zhou, Y., Shen, X.Y., He, F., Xu, J., and Wang, H.Q. 2016. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS One. 11:e0152371.
Jiao, S.S., Shen, L.L., Zhu, C., Bu, X.L., Liu, Y.H., Liu, C.H., Yao, X.Q., Zhang, L.L., Zhou, H.D., Walker, D.G., Tan, J., Götz, J., Zhou, X.F., and Wang, Y.J. 2016. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease. Transl Psychiatry. 6:e907.
Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B., Ghetti, B., Koller, B.H., and LeBlanc, A.C. 2015. Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 22:1676-1686.
Kaytor, M.D., Orr, H.T. 2002. The GSK3β signaling cascade and neurodegenerative disease. Curr Opin Neurobiol. 12:275-278.
Khurana, R., Coleman, C., Ionescu-Zanetti, C., Carter, S.A., Krishna, V., Grover, R.K., Roy, R., and Singh, S. 2005. Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol. 151:229-238.
Konishi, H., Matsuzaki, H., Tanaka, M., Takemura, Y., Kuroda, S., Ono, Y., and Kikkawa, U. 1997. Activation of protein kinase B (Akt/RAC-protein kinase) by cellular stress and its association with heat shock protein Hsp27. FEBS Lett. 410:493-498.
Kosik, K.S., Joachim, C.L., and Selkoe, D.J. 1986. Microtubule- associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease. Proc Natl Acad Sci USA. 83:4044-4048.
Kitagawa, H., Sugo, N., Morimatsu, M., Arai, Y., Yanagida, T., and Yamamoto, N. 2017. Activity-dependent dynamics of the transcription factor of cAMP-response element binding protein in cortical neurons revealed by single-molecule imaging. J. Neurosci. 37:1-10.
Kumar, S., Krishnakumar, V.G., Morya, V., Gupta, S., and Datta, B. 2019. Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation. Int J Biol Macromol. 138:168-180.
Laifenfeld, D., Kerry, R., Grauer, E., Klein, E., and Ben-Shacher, D. 2005. Antidepressant and prolonged stress in rats modulate CAM-L1, laminin, and pCREB, implicated in neuronal plasticity. Neurobiol Dis. 20:432-441.
Landeira, B.S., Santana, T.T., Araujo, J.A., Tabet, E.I., Tannous, B.A., Schroeder, T., and Costa, M.R. 2016. Activity-independent effects of CREB on neuronal survival and differentiation during mouse cerebral cortex development. Cereb Cortex. 28:537-548.
Lane, C.A., Hardy, J., and Schott, J.M. 2018. Alzheimer’s disease. Eur J Neurol. 25:59-70.
Ledesma, M.D., Bonay, P., Colaço, C., and Avila, J. 1994. Analysis of microtubule-associated protein tau glycation in paired helical filaments. J Biol Chem. 269:21614-21619.
Lee, R., Kermani, P., Teng, K.K., and Hempstead, B.L. 2001. Regulation of cell survival by secreted proneurotrophins. Science. 294:1945-1948.
Lee, G., Thangavel, R., Sharma, V.M., Litersky, J.M., Bhaskar, K., Fang, S.M., Do, L.H., Andreadis, A., Van Hoesen, G., and Ksiezak-Reding, H. 2004. Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J Neurosci. 24:2304-2312.
Li, D.D., Zhang, Y.H., Zhang, W., and Zhao, P. 2019. Meta-analysis of randomized controlled trials on the efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease. Front Neurosci. 13:472.
Linseman, D.A., Butts, B.D., Precht, T.A., Phelps, R.A., Le, S.S., Laessig, T.A., Bouchard, R.J., Florez-McClure, M.L., and Heidenreich, K.A. 2004. Glycogen synthase kinase-3β phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 24:9993-10002.
Lin, T.H., Chiu, Y.J., Lin, C.H., Lin, C.Y., Chao, C.Y., Chen, Y.C., Yang, S.M., Lin, W., Hsieh-Li, H.M., Wu, Y.R., Chang, K.H., Lee-Chen, G.J., Chen, C.M. 2020. Exploration of multi-target effects of 3-benzoyl-5-hydroxychromen-2-one in Alzheimer’s disease cell and mouse models. Aging Cell. 19(7).
Liu, L., Cavanaugh, J.E., Wang, Y., Sakagami, H., Mao, Z., and Xia, Z. 2003. ERK5 activation of MEF2-mediated gene expression plays a critical role in BDNF-promoted survival of developing but not mature cortical neurons. Proc Natl Acad Sci USA. 100:8532-8537.
Liu, X., Chan, C.B., Jang, S.W., Pradoldej, S., Huang, J., He, K. Phun, L.H., France, S., Xiao, G., Jia, Y., Luo, H.R., and Ye, K. 2010. A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem. 53:8274-8286.
Liu, R., Zhang, T., Yang, H., Lan, X., Ying, J., and Du, G. 2011. The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25-35-induced toxicity in mice. J Alzheimers Dis. 24:85-100.
Maeda, S., Sahara, N., Saito, Y., Murayama, M., Yoshiike, Y., Kim, H., Miyasaka, T., Murayama, S., Ikai, A., and Takashima, A. 2007. Granular tau oligomers as intermediates of tau filaments. Biochemistry. 46 :3856-3861.
Martínez-Flórez, S., Gutiérrez-Fernández, B., Sánchez-Campos, S., González-Gallego, J., and Tuñón, M.J. 2005. Quercetin attenuates nuclear factor-kappaB activation and nitric oxide production in interleukin-1beta-activated rat hepatocytes. J Nutr. 135:1359-1365.
Martinon, F., Burns, K., and Tschopp, J. 2002. The Inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell. 10:417-426.
Mattson, M.P., Maudsley, S., and Martin, B. 2004. A neural signaling triumvirate that influences ageing and age related disease: insulin/IGF-1, BDNF and serotonin. Ageing Res Rev. 3:445-464.
McKay, D.L., and Blumberg, J.B. 2006. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.) Phytother Res. 20:519-530.
Meng, G., Sun, Y., Fu, W., Guo, Z., and Xu, L. 2011. Microcystin-LR induces cytoskeleton system reorganization through hyperphosphorylation of tau and HSP27 via PP2A inhibition and subsequent activation of the p38 MAPK signaling pathway in neuroendocrine (PC12) cells. Toxicology. 290:218-229.
Minichiello, L., Calella, A.M., Medina, D.L., Bonhoeffer, T., Klein, R., and Korte, M. 2002. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron. 36:121-137.
Mirra, S.S., Murrell, J.R., Gearing, M., Spillantini, M.G., Goedert, M., Crowther, R.A., Levey, A.I., Jones, R., Green, J., Shoffner, J.M., Wainer, B.H., Schmidt, M.L., Trojanowski, J.Q., and Ghetti, B. 1999. Tau pathology in a family with dementia and a P301L mutation in tau. J Neuropathol Exp Neurol. 58:335-345.
Miyasaka, T., Watanabe, A., Saito, Y., Murayama, S., Mann, D.M., Yamazaki, M., Ravid, R., Morishima-Kawashima, M., Nagashima, K., and Ihara, Y. 2005. Visualization of newly deposited tau in neurofibrillary tangles and neuropil threads. J Neuropathol Exp Neurol. 64:665-674.
Mowla, S.J., Pareek, S., Farhadi, H.F., Petrecca, K., Fawcett, J.P., Seidah, N.G., Morris, S.J., Sossin, W.S., and Murphy, R.A. 1999. Differential sorting of nerve growth factor and brain-derived neurotrophic factor in hippocampal neurons. J Neurosci. 19:2069-2680.
Nakatsue, T., Katoh, I., Nakamura, S., Takahashi, Y., Ikawa, Y., and Yoshinaka, Y. 1998. Acute infection of Sindbis virus induces phosphorylation and intracellular translocation of small heat shock protein HSP27 and activation of p38 MAP kinase signaling pathway. Biochem Biophys Res Commun. 253:59-64.
Neve, R.L., Harris, P., Kosik, K.S., Kurnit, D.M., and Donlon, T.A. 1986. Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res. 387:271-280.
Nie, S., Ma, K., Sun, M., Lee, M., Tan, Y., Chen, G., Zhang, Z., Zhang, Z., and Cao, X. 2019. 7,8-Dihydroxyflavone protects nigrostriatal dopaminergic neurons from rotenone-induced neurotoxicity in rodents. Parkinsons Dis. 2019:9193534.
Noble, W., Olm, V., Takata, K., Casey, E., Mary, O., Meyerson, J., Gaynor K, LaFrancois, J., Wang, L., Kondo, T., Davies, P., Burns, M., Veeranna, Nixon, R., Dickson, D., Matsuoka, Y., Ahlijanian, M., Lau, L.F., and Duff, K. 2003. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 38:555-565.
Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E.K., Jones, P.K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C.S., Petersen, R.B., and Smith, M.A. 2001. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol. 60:759-767.
Pan, W., Banks, W.A., Fasold, M.B., Bluth, J., and Kastin, A.J. 1998. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 37:1553-1561.
Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W.H., Hempstead, B.L., and Lu, B. 2004. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 306:487-491.
Pardridge, W.M. 2007. Blood-brain barrier delivery. Drug Discov Today. 12:54-61.
Parnetti, L., Senin, U., and Mecocci, P. 1997. Cognitive enhancement therapy for Alzheimer’s disease. The way forward. Drugs. 53:752-768.
Patapoutian, A., and Reichardt, L.F. 2001. Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol. 11:272-280.
Perry, E.K., Perry, R.H., Blessed, G., and Tomlinson, B.E. 1977. Necropsy evidence of central cholinergic deficits in senile dementia. Lancet. 1:189.
Persengiev, S.P., and Green, M.R. 2003. The role of CREB/ATF family members in cell growth, survival and apoptosis. Apoptosis. 8:225-228.
Phillips, H.S., Hains, J.M., Armanini, M., Laramee, G.R., Johnson, S.A., and Winslow, J.W. 1991. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron. 7:695-702.
Polinsky, R.J. 1998. Clinical pharmacology of rivastigmine: a new-generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther. 20:634 -647.
Poo, M.M. 2001. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2:24-32.
Prasad, K.N. 2016. Simultaneous activation of Nrf2 and elevation of antioxidant compounds for reducing oxidative stress and chronic inflammation in human Alzheimer's disease. Mech Ageing Dev. 53:41-47.
Priprem, A., Watanatorn, J., Sutthiparinyanont, S., Phachonpai, W., and Muchimapura, S. 2008. Anxiety and cognitive effects of quercetin liposomes in rats. Nanomedicine. 4:70-78.
Reichardt, L.F. 2006. Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond B Biol Sci. 361:1545-1564.
Rizzu, P., van Swieten, J.C., Joosse, M., Hasegawa, M., Stevens, M., Tibben, A., Niermeijer, M.F., Hillebrand, M., Ravid, R., Oostra, B.A., Goedert, M., van Duijn, C.M., and Heutink, P., 1999. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet. 64:414-421.
Rojo, A.I., Pajares, M., Rada, P., Nuñez, A., Nevado-Holgado, A.J., Killik, R., Van Leuven, F., Ribe, E., Lovestone, S., Yamamoto, M., and Cuadrado, A. 2017. NRF2 deficiency replicates transcriptomic changes in Alzheimer's patients and worsens APP and TAU pathology. Redox Biol. 13:444-451.
Sabogal-guáqueta, A.M., Muñoz-manco, J.I., Ramírez, J.R., Lamprea-rodriguez, M., Osorio, E., and Cardona-gómez, G.P. 2015. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology. 93:134-145.
Sadigh-Eteghad, S., Talebi, M., and Farhoudi, M. 2012. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer’s disease. A meta-analysis. Neurosciences. 17:321-326.
Sassone-Corsi, P. 1995. Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol. 11:355-377.
Satou, T., Cummings, B.J., and Cotman, C.W. 1995. Immunoreactivity for Bcl-2 protein within neurons in the Alzheimer’s disease brain increases with disease severity. Brain Res. 697:35-43.
Schecterson, L.C., and Bothwell, M. 1992. Novel roles for neurotrophins are suggested by BDNF and NT-3 mRNA expression in developing neurons. Neuron. 9:449-463.
Seidah, N.G., Benjannet, S., Pareek, S., Savaria, D., Hamelin, J., Goulet, B., Laliberte, J., Lazure, C., Chrétien, M., and Murphy, R.A. 1996. Cellular processing of the nerve growth factor precursor by the mammalian pro-protein convertases. Biochem J. 314:951-960.
Selkoe, D.J. 2002. Alzheimer’s disease is a synaptic failure. Science. 298:789-791.
Sergeant, N., Delacourte, A., and Buée, L. 2005. Tau protein as a differential biomarker of tauopathies. Biochim Biophys Acta. 1739:179-197.
Seyoum, A., Asres, K., and EI-Fiky, F.K. 2006. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry. 67:2058-2070.
Shaywitz, A.J, and Greenberg, M.E. 1999. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 68:821-861.
Shen, X.Y., Luo, T., Li, S., Ting, O.Y., He, F., Xu, J., and Wang, H.Q. 2018. Quercetin inhibits okadaic acid-induced tau protein hyperphosphorylation through the Ca2+-calpain-p25-CDK5 pathway in HT22 cells. Int J Mol Med. 41:1138-1146.
Shimura, H., Miura-Shimura, Y., and Kosik, K.S. 2004. Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J Biol Chem. 279:17957-17962.
Shukla, S., and Gupta, S. 2010. Apigenin: a promising molecule for cancer prevention. Pharm Res. 27:962-978.
Silvan, S., Manoharan, S., Baskaran, N., Anusuya, C., Karthikeyan, S., and Prabhakar, M.M. 2011. Chemopreventive potential of apigenin in 7,12-dimethylbenz(a)anthracene induced experimental oral carcinogenesis. Eur. J. Pharmacol. 670:571-577.
Silveyra, M. X., García-Ayllón, M. S., de Barreda, E. G., Small, D. H., Martínez, S., Avila, J., and Sáez-Valero, J. 2012. Altered expression of brain acetylcholinesterase in FTDP-17 human tau transgenic mice. Neurobiol Aging. 33:624.e23-34.
Šimić, G., Babić Leko, M., Wray, S., Harrington, C., Delalle, I., Jovanov-Milošević, N., Bažadona, D., Buée, L., de Silva, R., Di Giovanni, G., Wischik, C., and Hof, P.R. 2016. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 6:6.
Song, X., Jensen, M.Ø., Jogini, V., Stein, R.A., Lee, C.H., Mchaourab, H.S., Shaw, D.E., and Gouaux, E. 2018. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 556:515-519.
Sriraksa, N., Wattanathorn, J., Muchimapura, S., Tiamkao, S., Brown, K., and Chaisiwamongkol, K. 2012. Cognitive-enhancing effect of quercetin in a rat model of Parkinson’s disease induced by 6-hydroxydopamine. Evid Based Complement Alternat Med. 2012:823206.
Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, G., Söling, H.D., Drechsel, D., Kirschner, M.W., Goedert, M., and Mandelkow, E. 1990. Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9:3539-3544.
Sugimoto, H., Yamanishi, Y., Iimura, Y., Kawakami, Y. 2000. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr Med Chem. 7:303-339.
Sugimoto, H., Ogura, H., Arai, Y., Limura, Y., and Yamanishi, Y. 2002. Research and development of donepezil hydrochloride, a new type of acetylcholinesterase inhibitor. Jpn J Pharmacol. 89:7-20.
Tai, M.C., Shui, Y.T., Chang, L.Y.F., and Xue, H. 2005. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev. 11:141-150.
Tan, Y., Nie, S., Zhu, W., Liu, F., Guo, H., Chu, J., Cao, X.B., Jiang, X., Zhang, Y., and Li, Y. 2016. 7,8-Dihydroxyflavone ameliorates cognitive impairment by inhibiting expression of tau pathology in ApoE-knockout mice. Front Aging Neurosci. 8:287.
Tapia-Arancibia, L., Aliaga, E., Silhol, M., and Arancibia, S. 2008. New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev. 59:201-220.
Tchantchou, F., Lacor, P.N., Cao, Z., Lao, L., Hou, Y., Cui, C., Klein, W.L., and Luo, Y. 2009. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 18:787-798.
Teng, H.K., Teng, K.K., Lee, R., Wright, S., Tevar, S., Almeida, R.D., Kermani, P., Torkin, R., Chen, Z.Y., Lee, F.S., Kraemer, R.T., Nykjaer, A., and Hempstead, B.L. 2005. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci. 25:5455-5463.
Tong, L., Prieto, G.A., Kramár, E.A., Smith, E.D., Cribbs, D.H., Lynch, G., and Cotman, C.W. 2012. Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci. 32:17714-17724.
Torkin, R., Lavoie, J.F., Kaplan, D.R., and Yeger, H. 2005. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol. Cancer. 4:1-11.
Van Acker, S.A., de Groot, M.J., van, D.J., Tromp, M.N., den Kelder, G. D., van der Vijgh, W.J.F., Bast, A. 1996. A quantum chemical explanation of the antioxidant activity of flavonoids. Chem Res Toxicol. 9:1305-1312.
Wagner, U., Utton, M., Gallo, J.M., and Miller, C.C. 1996. Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation. J Cell Sci. 109:1537-1543.
Wang, J., Grundke-Iqbal, I. and Iqbal, K. 1996. Glycosylation of microtubule–associated protein tau: An abnormal posttranslational modification in Alzheimer’s disease. Nat Med. 2:871-875.
Wang, D.M., Li, S. Q., Wu, W.L., Zhu, X.Y., Wang, Y., and Yuan, H.Y. 2014. Effects of long-term treatment with quercetin on cognition and mitochondrial function in a mouse model of Alzheimer’s disease. Neurochem Res. 39:1533-1543.
Wang, Y., and Mandelkow, E. 2016. Tau in physiology and pathology. Nat Rev Neurosci. 17:5-21.
Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., and Kirschner, M.W. 1975. A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA. 72:1858-1862.
Weng, L., Guo, X., Li, Y., Yang, X., and Han, Y. 2016. Apigenin reverses depression-like behavior induced by chronic corticosterone treatment in mice. Eur. J. Pharmacol. 774:50-54.
Woo, N.H., Teng, H.K., Siao, C.J., Chiaruttini, C., Pang, P.T., Milner, T.A., Hempstead, B.L., and Lu, B. 2005. Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci. 8:1069-1077.
Xiang, Z., Haroutunian, V., Ho, L., Purohit, D., and Pasinetti, G.M. 2006. Microglia activation in the brain as inflammatory biomarker of Alzheimer’s disease neuropathology and clinical dementia. Dis Markers. 22:95-102.
Yin, Y., Gao, D., Wang, Y., Wang, Z.H., Wang, X., Ye, J., Wu, D., Fang, L., Pi, G., Yang, Y., Wang, X.C., Lu, C., Ye, K., and Wang, J.Z. 2016. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci USA. 113:E3773-E3781.
Youdim, K.A., Shukitt-Hale, B., and Joseph, J.A. 2004. Flavonoids and the brain: interactions at the blood-brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med. 37:1683-1693.
Youn, Y.J., and Cai, H. 2015. Fueling up skeletal muscle to reduce obesity: a TrkB story. Chem Biol. 22:311-312.
Yun, S.J., Park, H.J., Yeom, M.J., Hahm, D.H., Lee, H.J., and Lee, E.H. 2002. Effect of electroacupuncture on the stress induced changes in brain derived neurotrophic factor expression in rat hippocampus. Neurosci Lett. 318:85-88.
Zetterberg, H., and Mattsson, N. 2014. Understanding the cause of sporadic Alzheimer’s disease. Expert Rev Neurother. 14:621‐630.
Zhang, Z., Liu, X., Schroeder, J.P., Chan, C.B., Song, M., Yu, S.P., Weinshenker, D., and Ye, K. 2014. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 39:638-650.
Zhao, L., Wang, J.L., Liu, R., Li, X.X., Li, J.F., and Zhang, L. 2013. Neuroprotective anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer’s disease mouse model. Molecules. 18:9949-9965.
Zhao, K., Song, X., Huang, Y., Yao, J., Zhou, M., Li, Z., You, Q., Guo, Q., and Lu, N. 2014. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling. Eur J Pharmacol. 737:57-69.
Zhu, Y., and Wang, J. 2015. Wogonin increases β-amyloid clearance and inhibits tau phosphorylation via inhibition of mammalian target of rapamycin: potential drug to treat Alzheimer’s disease. Neurol Sci. 36:1181-1188.