簡易檢索 / 詳目顯示

研究生: 李旻祐
Lee, Min-Yu
論文名稱: 基於多尺度熵與支持向量數據描述之軸承故障診斷系統
Bearing fault diagnosis system based on multiscale entropy and support vector data description
指導教授: 吳順德
Wu, Shuen-De
口試委員: 王俊傑 呂有勝 吳順德
口試日期: 2021/07/29
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 65
中文關鍵詞: 軸承故障診斷多尺度熵支持向量數據描述非監督學習
英文關鍵詞: Bearing fault diagnosis, Multi-scale entropy, Support vector data description, Unsupervised learning
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101303
論文種類: 學術論文
相關次數: 點閱:96下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於各類迴轉機械來說,旋轉機械、齒輪箱、旋轉刀具等等各類元件容易因為長時間的震動與磨損,產生軸承運轉上的問題。並且,實際在工廠機台運作時,時常是沒有人手進行資料採集以及分類的。因此需要設計一套能夠前處理以及分類無標籤資料的系統。本研究提出了一個以多尺度熵進行特徵抽取,以複數尺度向量數據描述進行軸承振動訊號分析的系統。本研究使用IMS軸承資料庫進行測試,實驗結果能夠準確在軸承出現異常時迅速判斷,提醒使用者軸承出現損壞。並且以此方法,可以實現非監督學習,自行前處理並進行分析。

    For all kinds of rotating machinery, rotating machinery, gearboxes, rotating tools and other components are prone to bearing operation problems due to long-term vibration and wear. In addition, in the actual operation of the factory machine, there is often no manpower for data collection and classification. Therefore, it is necessary to design a system that can pre-process and classify unlabeled data. This research proposes a system that uses multi-scale entropy for feature extraction and complex scale vector data to describe bearing vibration signal analysis. In this study, the IMS bearing database was used for testing. The experimental results can accurately determine when the bearing is abnormal and remind the user that the bearing is damaged. And in this way, unsupervised learning can be realized, pre-processing and analysis can be performed by itself.

    第一章 緒論 1 前言 1 研究動機與目標 2 系統架構與論文章章節概述 3 第二章 文獻探討 4 1. 類神經網路 7 1.1神經元 9 1.2激勵函數 9 1.3模型架構 10 1.4網路訓練(Train) 11 1.5深度神經網路 12 1.6卷積神經網路 13 1.7卷積層 14 1.8池化層 15 1.9神經網路層 15 1.10 Dropout處理 15 1.11自編碼器 16 1.12卷積自編碼器 18 2.熵(Entropy) 19 2.1排序熵(Permutation entropy) 20 2.2頻譜熵(Spectrum Entropy, SpEn) 22 2.3 取樣熵(Sampling Entropy) 23 2.4多尺度熵(Multiscale entropy, MSE) 25 2.5多尺度排序熵(Composite Multiscale Permutation Entropy, CMPE) 27 2.6 多尺度組合熵(Composite Multiscale Entropy, CMSE) 28 3.1支持向量機 30 3.2 支持向量數據描述 32 4.網格搜尋演算法 34 第三章 研究方法 35 1.訊號取得 36 1.1 訊號前處理 36 2.多尺度熵 37 3.支持向量數據描述 37 4.網格搜尋 38 第四章 實驗結果與討論 39 1. 多尺度熵特徵抽取結果 39 2. 支持向量數據分析 40 3. 實驗結果 41 3.1精確組合式多尺度熵(RCMSE) 45 3.2.精確組合式多尺度排序熵(RCMPE) 55 第五章 結論 64 參考文獻 65

    [1]Guo Bo-Xain, Wu Shuen-De, "Bearing Fault Diagnosis System Based on Convolutional Neural Network"
    [2] Shuen-De Wu , Po-Hung Wu , Chiu-Wen Wu , Jian-Jiun Ding , Chun-Chieh Wang, "Bearing Fault Diagnosis Based on Multiscale Permutation Entropy and Support Vector Machine"
    [3] Chen Lu, Zhen-Ya Wang, Wei-Li Qin , Jian Ma, "Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identification"
    [4] DMJ Tax, RPW Duin , "Support vector domain description"
    [5] DMJ Tax, RPW Duin , "Support vector data description"
    [6]W. S. McCulloch and W. Pitts, "A logical calculus of the ideas immanent in nervous activity"
    [7] C Szegedy, A Toshev, D Erhan, "Deep neural networks for object detection"
    [8] Y. B. Liu, Q. Long, Z. H. Feng and W. L. Liu, "Detection method for nonlinear and non-stationary signals"
    [9] R Yan, Y Liu, RX Gao, "Permutation entropy: A nonlinear statistical measure for status characterization of rotary machines"
    [10] J. S. Richman and J. R. Moorman, "Physiological time-series analysis using
    approximate entropy and sample entropy,"
    [11]S. D.Wu, C. W. Wu, S. G. Lin , C. C. Wang and K. Y. Lee "Time Series
    Analysis Using Composite Multiscale Entropy"
    [12]W. Aziz , M. Arif, "Multiscale Permutation Entropy of Physiological Time
    Series"
    [13] Fengtao Wang, Bei Wang, Bosen Dun, Xutao Chen, Dawen Yan, Hong Zhu, "Remaining life prediction of rolling bearing based on PCA and improved logistic regression model"

    下載圖示
    QR CODE