研究生: |
黃珮瑜 Huang,Pei-Yu |
---|---|
論文名稱: |
化學鍍法製備銅奈米島狀薄膜及其螢光增強特性分析 Preparation of Copper Nano-Island Films by Electroless Plating and Their Fluorescence Enhancement Characteristics |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 金屬螢光增強 、局部表面電漿共振 、銅奈米粒子 、賈凡尼置換反應 |
英文關鍵詞: | Metal Enhanced Fluorescence (MEF), Local Surface Plasmon Resonance (LSPR), Copper nanoparticles, Galvanic replacement |
DOI URL: | http://doi.org/10.6345/NTNU202000786 |
論文種類: | 學術論文 |
相關次數: | 點閱:249 下載:19 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
金屬奈米粒子具有金屬螢光增強( Metal Enhanced Fluorescence, MEF )之特性,鄰近於金屬奈米粒子的螢光分子(距離小於20nm),會受到金屬奈米粒子表面增強電場的影響,進而增強或減弱螢光分子的螢光強度。目前關於金屬螢光增強的研究文獻大多著重於金與銀的奈米粒子,而銅奈米粒子由於其表面相對的容易氧化,故銅的表面電漿共振( Localized Surface Plasmon Resonance, LSPR )相關的研究和應用並未受到太大的重視。本實驗室先前利用金的晶種修飾於玻璃基板後,順利的製備出銅奈米薄膜,但金的晶種增加了實驗成本,因此本研究改善了銅奈米島狀薄膜的製備方法,在不使用金的條件下先於玻璃基板上長出銅晶種,再以少量的銀離子進行賈凡尼置換反應( Galvanic replacement ),形成銅銀核殼晶種( Cu@Ag Seed ),最後以甲醛作為還原劑,順利成長出銅奈米島狀薄膜。為了解決銅奈米島狀薄膜氧化的問題,我們在薄膜上修飾硫醇,並利用碳酸氫鈉緩衝溶液抑制銅的氧化。為了進一步探討銅奈米島狀薄膜與螢光增強倍率的關係,本研究改變銅的生長時間並測試不同的硫醇表面修飾。結果發現銅薄膜的生長時間為4分鐘且以硫十一醇( 11-mercapto-1-undecanol,11-MUD )修飾薄膜表面時,能夠得到最高的螢光增強倍率達148倍。未來期許本實驗所備的銅奈米島狀薄膜能更進一步的應用到螢光增強的生物化學檢測技術中。
Metal nanoparticles have the characteristics of Metal Enhanced Fluorescence (MEF). The fluorescent molecules adjacent to the metal nanoparticles (with a distance of less than 20 nm) are affected by the enhanced electric field on the surface of the metal nanoparticles, thereby enhancing or reducing the fluorescence intensity of fluorescent molecules. Currently, most of the research on MEF focuses on gold and silver nanoparticles, while copper nanoparticles are relatively easily oxidized on the surface. Therefore, researches on Local Surface Plasmon Resonance (LSPR) of copper haven’t been attracted. Previously, the laboratory used gold seeds to modify the glass substrate and successfully prepared copper nano-films, but gold seeds increased the experimental cost, so this study improved the preparation method of copper nano-island films. In the absence of gold, copper seeds were grown on a glass substrate, and then a small amount of silver ions were used to perform the Galvanic replacement to form copper silver core-shell seed. Finally, formaldehyde was used as a reducing agent to grow a copper nano island film. To prevent oxidation of copper, we modified the thiol on the films and used sodium bicarbonate buffer solution to inhibit copper oxidation. In order to explore the relationship between the copper nano-island films and the fluorescence enhancement magnification, we changed the copper growth time and different thiol surface modifications. From the results, the growth time of the copper film was 4 minutes as the surface of the film was modified with 11-mercapto-1-undecanol,then the highest fluorescence enhancement factor was 148 times. This experiment expects that the prepared copper nano-island film can be further applied to fluorescence enhanced biochemical detection technology.
1. Grieshaber, D.; MacKenzie, R.; Vรถrรถs, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8 (3), 1400-1458.
2. Jeong, Y.; Kook, Y.-M.; Lee, K.; Koh, W.-G., Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosensors and Bioelectronics 2018, 111, 102-116.
3. Clark Jr, L. C., Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences 1962, 102, 29-45.
4. Fracchiolla, N. S.; Artuso, S.; Cortelezzi, A., Biosensors in clinical practice: focus on oncohematology. Sensors 2013, 13 (5), 6423-6447.
5. Wang, J., Electrochemical glucose biosensors. Chemical reviews 2008, 108 (2), 814-825.
6. Hoa, X. D.; Kirk, A.; Tabrizian, M., Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. Biosensors and bioelectronics 2007, 23 (2), 151-160.
7. Ahuja, T.; Kumar, D., Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sensors and Actuators B: Chemical 2009, 136 (1), 275-286.
8. Mohanty, S. P.; Kougianos, E., Biosensors: a tutorial review. Ieee Potentials 2006, 25 (2), 35-40.
9. Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G., Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends in Analytical Chemistry 2016, 79, 114-126.
10. Sanati, A.; Jalali, M.; Raeissi, K.; Karimzadeh, F.; Kharaziha, M.; Mahshid, S. S.; Mahshid, S., A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials. Microchimica Acta 2019, 186 (12), 773.
11. Labib, M.; Sargent, E. H.; Kelley, S. O., Electrochemical methods for the analysis of clinically relevant biomolecules. Chemical reviews 2016, 116 (16), 9001-9090.
12. Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R., Electrochemical biosensors. Chemical Society Reviews 2010, 39 (5), 1747-1763.
13. Hayat, A.; Marty, J. L., Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 2014, 14 (6), 10432-10453.
14. Sinha, A.; Jain, R.; Zhao, H.; Karolia, P.; Jadon, N., Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review. Microchimica Acta 2018, 185 (2), 89.
15. Wegner, K. D.; Hildebrandt, N., Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chemical Society Reviews 2015, 44 (14), 4792-4834.
16. Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H., Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society 2006, 128 (24), 7756-7757.
17. Chen, G.; Qiu, H.; Prasad, P. N.; Chen, X., Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chemical reviews 2014, 114 (10), 5161-5214.
18. Thomas, S. W.; Joly, G. D.; Swager, T. M., Chemical sensors based on amplifying fluorescent conjugated polymers. Chemical reviews 2007, 107 (4), 1339-1386.
19. Gericke, M.; Pinches, A., Biological synthesis of metal nanoparticles. Hydrometallurgy 2006, 83 (1-4), 132-140.
20. Li, Y.-Q.; Guan, L.-Y.; Zhang, H.-L.; Chen, J.; Lin, S.; Ma, Z.-Y.; Zhao, Y.-D., Distance-dependent metal-enhanced quantum dots fluorescence analysis in solution by capillary electrophoresis and its application to DNA detection. Analytical chemistry 2011, 83 (11), 4103-4109.
21. Cheng, D.; Xu, Q.-H., Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles. Chemical communications 2007, (3), 248-250.
22. Jensen, T.; Van Duyne, R. P.; Johnson, S.; Maroni, V., Surface-enhanced infrared spectroscopy: a comparison of metal island films with discrete and nondiscrete surface plasmons. Applied Spectroscopy 2000, 54 (3), 371-377.
23. Shimizu, K.; Woo, W.; Fisher, B.; Eisler, H.; Bawendi, M. G., Surface-enhanced emission from single semiconductor nanocrystals. Physical review letters 2002, 89 (11), 117401.
24. Haes, A. J.; Chang, L.; Klein, W. L.; Van Duyne, R. P., Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society 2005, 127 (7), 2264-2271.
25. Hammond, J. L.; Bhalla, N.; Rafiee, S. D.; Estrela, P., Localized surface plasmon resonance as a biosensing platform for developing countries. Biosensors 2014, 4 (2), 172-188.
26. Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
27. Guzatov, D. V.; Vaschenko, S. V.; Stankevich, V. V.; Lunevich, A. Y.; Glukhov, Y. F.; Gaponenko, S. V., Plasmonic enhancement of molecular fluorescence near silver nanoparticles: theory, modeling, and experiment. The Journal of Physical Chemistry C 2012, 116 (19), 10723-10733.
28. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst 2008, 133 (10), 1308-1346.
29. Li, M.; Cushing, S. K.; Wu, N., Plasmon-enhanced optical sensors: a review. Analyst 2015, 140 (2), 386-406.
30. Zenin, V. A.; Andryieuski, A.; Malureanu, R.; Radko, I. P.; Volkov, V. S.; Gramotnev, D. K.; Lavrinenko, A. V.; Bozhevolnyi, S. I., Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano letters 2015, 15 (12), 8148-8154.
31. Abadeer, N. S.; Brennan, M. R.; Wilson, W. L.; Murphy, C. J., Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS nano 2014, 8 (8), 8392-8406.
32. Lakowicz, J. R., Radiative decay engineering: biophysical and biomedical applications. Analytical biochemistry 2001, 298 (1), 1.
33. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A., Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature communications 2011, 2 (1), 1-9.
34. Cui, X.; Hutt, D. A.; Conway, P. P., Evolution of microstructure and electrical conductivity of electroless copper deposits on a glass substrate. Thin Solid Films 2012, 520 (19), 6095-6099.
35. Hanna, F.; Hamid, Z. A.; Aal, A. A., Controlling factors affecting the stability and rate of electroless copper plating. Materials letters 2004, 58 (1-2), 104-109.
36. Shacham-Diamand, Y.; Osaka, T.; Okinaka, Y.; Sugiyama, A.; Dubin, V., 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectronic Engineering 2015, 132, 35-45.
37. Touir, R.; Larhzil, H.; Ebntouhami, M.; Cherkaoui, M.; Chassaing, E., Electroless deposition of copper in acidic solutions using hypophosphite reducing agent. Journal of Applied Electrochemistry 2006, 36 (1), 69-75.
38. Gan, X.; Wu, Y.; Liu, L.; Shen, B.; Hu, W., Electroless copper plating on PET fabrics using hypophosphite as reducing agent. Surface and Coatings Technology 2007, 201 (16-17), 7018-7023.
39. Yang, F.; Yang, B.; Lu, B.; Huang, L.; Xu, S.; Zhou, S., Electrochemical study on electroless copper plating using sodium hypophosphite as reductant. Acta Physico-Chimica Sinica 2006, 22 (11), 1317-1321.
40. Su, W.; Yao, L.; Yang, F.; Li, P.; Chen, J.; Liang, L., Electroless plating of copper on surface-modified glass substrate. Applied surface science 2011, 257 (18), 8067-8071.
41. Meenan, B.; Brown, N.; Wilson, J., Characterisation of a PdCl2/SnCl2 electroless plating catalyst system adsorbed on barium titanate-based electroactive ceramics. Applied surface science 1994, 74 (3), 221-233.
42. Zhao, J.; Tian, R.; Zhi, J., Electroless deposition of copper and fabrication of copper micropatterns on CVD diamond film surfaces. Applied surface science 2008, 254 (11), 3282-3287.
43. Park, J.; Kwon, T.; Kim, J.; Jin, H.; Kim, H. Y.; Kim, B.; Joo, S. H.; Lee, K., Hollow nanoparticles as emerging electrocatalysts for renewable energy conversion reactions. Chemical Society Reviews 2018, 47 (22), 8173-8202.
44. Vekariya, R. L.; Dhar, A.; Lunagariya, J., Synthesis of silver nanoparticles in aqueous solution: ionic liquid used as a shape transformer. Colloid and Surface Science 2016, 1 (1), 5.
45. Lin, F.; Shao, Z.; Li, P.; Chen, Z.; Liu, X.; Li, M.; Zhang, B.; Huang, J.; Zhu, G.; Dong, B., Low-cost dual cocatalysts BiVO 4 for highly efficient visible photocatalytic oxidation. RSC advances 2017, 7 (25), 15053-15059.
46. Tsai YS, C. Y., Cheng PC, et al., TGF-β1 conjugated to gold nanoparticles results in protein conformational changes and attenuates the biological function. (1613-6829 (Electronic)).
47. Ferreira, C. M.; Pinto, I. S.; Soares, E. V.; Soares, H. M., (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ionsโ«็a review. Rsc Advances 2015, 5 (39), 30989-31003.
48. Khlebtsov, B. N.; Khanadeev, V. A.; Panfilova, E. V.; Bratashov, D. N.; Khlebtsov, N. G., Gold nanoisland films as reproducible SERS substrates for highly sensitive detection of fungicides. ACS applied materials & interfaces 2015, 7 (12), 6518-6529.