研究生: |
吳志旭 |
---|---|
論文名稱: |
對苯二胺及間苯二胺質量解析臨界游離光譜研究 |
指導教授: | 曾文碧 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 質量解析臨界游離光譜 |
論文種類: | 學術論文 |
相關次數: | 點閱:197 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們應用單色共振雙光子游離光譜術來探討苯二胺的結構異構物的第一電子激發態S1的振動光譜,以及使用雙色共振雙光子游離和質量解析臨界游離光譜術來研究其離子態D0的特性及振動光譜,並測得精準的游離能。對苯二胺和間苯二胺的絕熱游離能分別測得為54624+-5和58321+-5 cm-1。我們以理論計算、密度泛函數理論及其他苯胺衍生物的實驗結果為基礎,來比對所測得的解析振動光譜,很成功的辨認並解釋有效的振動模式。實驗結果顯示在結構異構物中,取代基的特性以及在苯環上的相對位置皆會對分子的躍遷、游離以及振動模式造成影響。
We have applied two‐color resonant two‐photon mass analyzed threshold ionization ( MATI ) spectroscopy to investigate the ionic properties of the structural isomers of diaminobenzene. The adiabatic ionization energies ( IEs ) of p‐, and m‐diaminobenzene have been determined to be 54624+-5, and 58321+-5 cm-1, respectively. These vibrationally resolved spectra provide information about the active normal vibrations of the corresponding cations. The observed spectral features have been successfully assigned on the basis of comparison with the results from ab initio and density functional calculations and experimental data available in the literature. The results suggest that both the nature of the substituents and the relative location in the ring can influence the electronic transition, ionization, and molecular vibration for these structural isomers.
[1] E.W. Schlag, Zeke Spectroscopy, Cambridge University Press, Cambridge, U.K., (1998).
[2] A. W. Castleman, Jr., W. B. Tzeng, S. Wei, S. Morgan, J. Chem. Soc. Faraday Trans. 86 (1990) 2417.
[3] D.E. Powers, J.B. Hopkins, R.E. Smally, J. Chem. Phys. 72 (1980) 5721.
[4] D. Villarejo, R.R. Herm, M.G. Inghram, J. Chem. Phys. 46 (1967) 4995.
[5] C.Y. Ng, Int. J. Mass Spectrosc. 200 (2000) 357.
[6] L. Santos, E. Martinez, B. Ballesteros, J. Snchez, Spectrochim. Acta A 56 (2000) 1905
[7] S. Yan, L.H. Spangler, J. Chem. Phys. 96 (1992) 4106.
[8] X.Q. Tan, D.W. Pratt, J. Chem. Phys. 100 (1994) 7061.
[9] L. Zhu, P.M. Johnson, J. Chem. Phys. 94 (1991) 5769.
[10] W.B. Tzeng , J.L. Lin, J. Phys. Chem. A 103 (1999) 8612.
[11] J.L. Lin, W.B. Tzeng , Phys. Chem. Chem. Phys. 2 (2000) 3759.
[12] J.L. Lin, K.C. Lin, W.B. Tzeng, Appl. Spectrosc. 55 (2001) 120.
[13] J.L. Lin, K.C. Lin, W.B. Tzeng, J. Phys. Chem. A 106 (2002) 6462.
[14] S.C. Yang, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 362 (2002) 19.
[15] Y. Xie, H.W. Su, W.B. Tzeng, Chem. Phys.Lett. 394 (2004) 182.
[16] Y. Xie, J.L. Lin, W.B. Tzeng, Chem. Phys. 305 (2004) 285.
[17] J. Lin, J.L. Lin, W.B. Tzeng, Chem. Phys. Lett. 370 (2003) 44.
[18] J. Lin, W.B. Tzeng, Trends in Appl. Spectrosc. 5 (2004) 71.
[19] The NIST Chemistry Webbook. Availablefrom: <http://webbook.nist.gov/>, and references therein.
[20] M.J. Frisch et al., GAUSSIAN 03, Revision B.01, Gaussian, Inc., Pittsburgh, PA (2003).
[21] G. Varsanyi, Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives, Wiley, New York, 1974.
[22] H. Ozeki, K. Okuyama, M. Takahashi, K. Kimura, J. Phys. Chem. 95 (1991) 4308.
[23] W. B. Tzeng, K. Narayanan, J. Mol. Struct. (Theochem) 434 (1998) 247-253.
[24] A.L. McClellan, Tables of Experimental Dipole Moments, W.H. Freeman and Company, San Francisco, CA (1963).
[25] K. Müller-Dethlefs, M. Sander, E.W. Schlag, Chem. Phys. Lett. 112 (1984) 291.
[26] J.L. Lin, W.B. Tzeng, J. Chem. Phys. 115 (2001) 743.
[27] W.A. Chupka, J. Chem. Phys. 98 (1993) 4520.
[28] W.C. Wiely, I.H. Mclaren, Rev. Sci. Instr. 26 (1995) 234.
[29] M.E. Casida, C. Jamorski, K.C. Casida, D.R. Salahub, J. Chem. Phys. 108 (1998) 4439.
[30] M.G.H. Boogaarts, I. Holleman, R.T. Jongma, D.H. Parker, G. Meijer, U. Even, J. Chem. Phys. 104 (1996) 4357.
[31] R.S. Mulliken, J. Chem. Phys. 23 (1955) 1833.
[32] K. Kimura, J. Electron Spectrosc. Relat. Phenom. 100 (1999) 273.
[33] C.E.H. Dessent, K. Müller-Dethlefs, Chem. Rev. 100 (2000) 3999.
[34] I.N. Levine, Quantum Chemistry, New Jersey, 2000.
[35] W.E Sinclair, D.W. Pratt, J. Chem. Phys. 105 (1996) 7942.
[36] M. Colapietro, A. Domenicano, G. Portalone, G. Schultz, I. Hargittai, J. Phys. Chem. 91 (1987) 1728.
[37] E.E. Ernstbrunner, R.B. Girling, W.E.L. Grossman, E. Mayer, K.P.J. Williams, R.E. Hester, J. Raman Spectrosc. 10 (1981) 161.
[38] A.E. Ozel, S. Akyuz, J.E.D. Davies, J. Mol. Struct. 348 (1995) 77.
[39] D.M. Chipman, Q. Sun, G.N.R. Tripathi, J. Chem. Phys. 97 (1992) 8073.
[40] B.C. Giordano, L. Jin, A.J. Couch, J.P. Ferance, J.P. Landers, Anal. Chem. 76 (2004) 4705.
[41] M. Takayanagi, D. Negishi, Y. Skurai, J. Phys. Chem. A 106 (2002) 7690.
[42] S.V. Rahavendran, H.T. Karnes, Anal. Chem. 68 (1996) 3763.
[43] M. Lee, M.S. Kim, J. Chem. Phys. 123 ( 2005 ) 174310.
[44] S. Georgiev, H.J. Neusser, J Electron Spectrosc Relat Phenom. 142 (2005) 207.
[45] H.K. Woo, P. Wang, K.C. Lau, X. Xing, C.Y. Ng, J. Chem. Phys. 120 (2004) 1756.
[46] S. Georgiev, H.J. Neusser, T. Chakraborty, J. Chem. Phys. 120 (2004) 8015.
[47] C.H. Kwon, M.S. Kim, J. Chem. Phys. 120 (2004) 11578.
[48] K.W. Choi, S.K. Kim, D.S. Ahn, S. Lee, J. Phys. Chem. A. 108 (2004) 11292.
[49] T. Uchimura, H. Kanda, T. Isasaka, Anal. Sci. 19 (2003) 387.
[50] C.H. Kwon, H.L. Kim, M.S. Kim, J. Chem. Phys. 118 (2003) 6327.