研究生: |
陳柏均 Chen, Po-Chun |
---|---|
論文名稱: |
製備銀奈米島狀薄膜及螢光增強測試 Development of silver nano-island film for metal-enhanced fluorescence |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 表面電漿共振 、金屬增強螢光 、銀奈米島狀薄膜 |
英文關鍵詞: | localized surface plasmon resonance, metal-enhance fluorescence, silver nano-island film |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DC.033.2018.B05 |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,金屬奈米材料合成方法眾多,本實驗是利用無電電鍍法製備銀奈米島狀薄膜(Silver-Island Films,SIFs),以液相二次生長法,並用奈米金的晶種為基底,前驅物為硝酸銀(Silver nitrate),並以葡萄糖(D-glucose)為還原劑生長銀奈米島狀薄膜。金屬增強螢光(Metal-Enhanced fluorescence,MEF)已有許久的歷史,金屬增強螢光受到許多研究人員的矚目及被廣泛的利用,由於金屬材料的局部表面電漿共振(localized surface plasmon resonance,LSPR)效應,且具有LSPR的奈米銀島狀薄膜與表面螢光分子streptavidin-IR800互相作用,使得螢光訊號放大。為了得到螢光值最佳放大倍率,測試一系列的條件:硝酸銀濃度、氨水濃度、反應時間、不同的表面修飾。測試結果為硝酸銀為500μM、氨水濃度為39.25mM、反應時間為5分鐘時,並且以硫十一醇(11-mercapto-1-undecanol,11-MUD)修飾銀奈米島狀薄膜表面,得到最高的螢光值,螢光增強倍率為456倍。成功的在玻璃片上,生長銀奈米島狀薄膜,其優點為快速、且對環境無害。由於此薄膜具有螢光訊號放大的效果,所以銀奈米島狀薄膜可以應用於生化檢測。
Recently , there are many methods for synthesis nano-meterials. In this experiment,we use electroless plating to prepare silver nano-island film. First , we grow gold nanoparticles for seeds,and then we grow silver nano-islands. Metal-enhanced fluorescence has been attracted and invested by many researchers many years. Due to the localized surface plasmon resonance (LSPR) effect of the nano-metal material, the silver nano-island film with LSPR interacts with the surface fluorescent molecule streptavidin-IR800, resulting in the fluorescence amplification. In order to obtain the best fluorescence magnification, a series of conditions were tested, silver nitrate concentration, ammonia concentration, reaction time, and different surface modifications. The result was that the concentration of silver nitrate was 500 μM, the concentration of ammonium hydroxide solution was 39.25mM , the reaction time was 5 minutes, and the surface of the silver nano-island film was modified with 11-mercapto-1-undecanol (11-MUD) to obtain the highest fluorescence. The fluorescence of streptavidin-IR800 magnification is about 456 times.Successfully, we grow the silver nano-island on the glass substrate. The advantage is fast and harmless to the environment. Due to the film has a fluorescence magnification effect, the silver nano-island film can be applied to biochemical detection.
1. 牟中原、陳家俊,科學發展 2000,28(4),281-288.
2. 張立德,Nanomaterial奈米材料 2002,83-97.
3. 劉吉平、郝向陽,奈米科學與技術 2003,26-90.
4. Peiris, S.; McMurtrie, J.; Zhu, H. Y. Catal. Sci. Technol. 2016, 6, 320−338.
5. Willets, K. A.; Van Duyne, R. P. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
6. Ni, F.; Cotton, T. M. Anal. Chem. 1986, 58, 3159-3163.
7. Zhang, Y.; Aslan, K.; Previte, M. J.; Geddes, C. D. J. Fluoresc. 2007, 17, 627-631.
8. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. J. Fluoresc. 2005, 15, 643-654.
9. Shang, L.; Chen, H.; Dong, S. J. Phys. Chem. C 2007, 111, 10780-10784.
10. Abel, B.; Coskun, S.; Mohammed, M.; Williams, R.; Unalan, H. E.; Aslan, K. J. Phys. Chem. C 2015, 119, 675-684.
11. Zhang, J.; Chowdhury, M. H.; Lakowicz, J. R. Nano Lett. 2007, 7, 2101-2107.
12. Choudhury, S. D.; Badugu, R.; Ray, K.; Lakowicz, J. R. J. Phys. Chem. C 2012, 116, 5042-5048.
13. Gole, A.; Murphy, C. J. Langmuir 2005, 21, 10756-10762.
14. Caswell, K. K.; Wilson, J. N.; Bunz, U. H. F.; Murphy, C. J. J. Am. Chem. Soc. 2003, 125, 13914-13915.
15. Aslan, K.; Leonenko, Z.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109 (8), 3157-3162.
16. Aslan, K.; Lakowicz, J. R.; Geddes, C. D. J. Phys. Chem. B 2005, 109, 6247-6251.
17. Tabakman, S. M.; Chen, Z.; Sanchez Casalongue, H.; Wang, H.; Dai, H. Small 2011, 7, 499-505.
18. Tabakman, S. M.; Lau, L.; Robinson, J. T.; Price, J.; Sherlock, S. P.; Wang, H.; Zhang, B.; Chen, Z.; Tangsombatvisit, S.; Jarrell, J. A.; Utz, P. J.; Dai, H. Nat. Commun. 2011, 2, 466-474.
19. Sanchez-Iglesias, A.; Aldeanueva-Potel, P.; Ni, W.; Perez-Juste, J.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Mbenkum, B. N.; Liz-Marzan, L. M. Nano Today 2010, 5, 21-27.
20. Kruss, S.; Srot, V.; Aken, P. A.; Spatz, J. P. Langmuir 2012, 28, 1562-1568.
21. Tiani, D. J.; Pemberton, J. E. Langmuir 2003, 19, 6422-6429.
22. Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. J. Am. Chem. Soc. 2007, 129, 1524-1525.
23. Huang, C. J.; Ye, J.; Wang, S.; Stakenborg, T.; Lagae, L. Appl. Phys. Lett. 2012, 100, 173114.
24. Khlebtsov, B.; Khanadeev, V.; Panfilova, E.; Bratashov, D.; Khlebtsov, N. ACS Appl. Mater. Interfaces 2015, 7, 6518-6529.
25. Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y. H.; Zhang, L.; Li, L. J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; Maier, S. A. Nat. Commun. 2016, 7, 11283
26. Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, K. V.; Alford, N. M.; Ryan, M. P.; Xie, F. J. Mater. Chem. C 2017, 5(4), 917-925.
27. Fu, Y.; Zhang, J.; Lakowicz, J. R. Chem. Commun. 2012 , 48, 9726-9728.
28. Szmacinski, H.; Badugu, R.; Mahdavi, F.; Blair, S.; Lakowicz, J. R. J. Phys. Chem. C 2012, 116, 21563-21571.
29. Zhang, T.; Gao, N.; Li, S.; Lang, M. J.; Xu, Q. H. J. Phys. Chem. Lett. 2015, 6, 2043-2049.
30. Oh, Y. J.; Jeong, K. H. Adv. Mater. 2012, 24, 2234-2237.
31. Grzelak, J.; krajewska, A.; Krajnik, B.; Jamiola, D.; Choma, J.; Jankiewicz, B.; Piatkowski, D.; Nyga, P.; Mackowski, S. Nanospectroscopy 2016, 2, 1-6.
32. Wang, X. Y.; He, F.; Zhu, X.; Tang, F.; Li, L. D. Sci. Rep. 2014, 4, 4406-4411.
33. Zhang, R.; Wang, Z.; Song, C.; Yang, J.; Sadaf, A.; Cui, Y. J. Fluoresc. 2012, 23, 71-77.
34. Sun, J.; Li, Z. Y.; Sun, Y. H.; Zhong, L. B.; Huang, J.; Zhang, J. C.; Liang, Z. Q.; Chen, J. M.; Jiang, L. Nano Research 2018, 11(2), 953-965.
35. Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Nano Lett. 2005, 5, 1569-1574.
36. Shen, Y.; He, T.; Wang, W.; Zhan, Y.; Hu, X.; Yuan, B.; Zhou, X. Nanoscale 2015, 7, 20132-20141.
37. Bonyár, A.; Csarnovics, I.; Veres, M.; Himics, L.; Csík, A.; Kámán, J.; Balázs, L.; Kökényesi, S. Procedia Engineering 2016, 168, 1152-1155.
38. Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J. R.; Geddes, C. D. Current Opinion in Biotechnology 2005, 16 (1), 55-62.
39. Kinkhabwala, A.; Yu, Z. F.; Fan, S. H.; Avlasevich, Y.; Mullen, K.; Moerner, W. E. Nat. Photonics 2009, 3, 654-657.