簡易檢索 / 詳目顯示

研究生: 金宣安
Chin, Hsuan-An
論文名稱: 綠弄蝶屬之分子親緣與生物地理研究
Phylogeny and biogeography of the genus Choaspes. (Lepidoptera: Hesperiidae)
指導教授: 徐堉峰
Hsu, Yu-Feng
千葉秀幸
Hideyuki Chiba
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 51
中文關鍵詞: 分子親緣關係隔離分化擴散分子鐘翅紋
英文關鍵詞: molecular phylogeny, vicariance, dispersal, molecular clock, wing pattern
論文種類: 學術論文
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中國西南部至華萊士區具複雜地質歷史與高度的生物多樣性,吸引著生物地理學家與演化生物學家,但過去對本區與其餘印度太平洋海域間的生物地理關係以及物種在本區內分布的鱗翅目研究數量稀少。綠弄蝶屬的分布範圍跨越了此地區並演化出許多特有亞種,可能為了解此區地質歷史對生物分布影響的理想研究材料。達成此目標需要可信的綠弄蝶屬屬內親緣關係,但不同學者對綠弄蝶屬中各分類群的分類地位看法不一而且混亂。本研究利用粒線體基因COI、COII與核基因Ef-1α重建綠弄蝶屬的親緣關係,釐清屬內分類,再藉由分子鐘定年與祖先區域重建探討綠弄蝶屬的分布與分化歷程;另藉由分子親緣關係重建翅紋祖徵狀態。親緣關係建構結果支持Chiba利用交尾器所做分群,另顯示C. hemixanthus中可能有隱藏種。分子定年與祖先區域重建結果顯示綠弄蝶屬可能在白堊紀晚期起源於亞洲大陸,於中新世至漸新世向西、向南擴散並隔離分化。而其翅紋相似性發生於不同支系之間,為平行演化的結果。本屬種級以上的分化主要由地理隔離造成,種內則多為由氣候影響之海平面升降導致的隔離分化。而其翅紋平行演化的歷程尚待探討,擬態與氣候因子為可能因素。

    The region from Southwest China to Wallacea shows high biodiversity, and extremely complicated tectonic history, consequently it is attractive to biogeographers and evolutionary biologists. Nonetheless, studies on biogeography in butterflies within and across the region were scanty. Since members of the genus Choaspes are distributed across the region and had evolved to many endemic forms in Sundaland and Wallacea, they may be an ideal material for performing a research to understand the influence of biogeographic history to the organisms inhabiting in this region. To achieve this goal, a solid phylogenetic frameword of the genus is necessary, but species delimitations of Choaspes members are still disputed and need to be solved first. The first objective of this research is to construct molecular phylogeny of Choaspes by using mitochondrial genes COI, COII and nuclear gene Ef-1α. The phylogeny supports Chiba’s taxonomic opinions in large part. Next, geographic history of Choaspes was explored through molecular dating analysis and ancestral area reconstruction. Choaspes originated in Asia mainland in late Cretaceous, and mainly diversed from Oligocene to Pliocene through dispersal and vicariance. Diversification above species level was caused by geological vicariance after dispersal, While intraspecific diversification was caused by climate-induced vicariance after dispersal. Moreover, this study has clairfied the similarity of wing patterns among sympatric Choaspes species is resulted from parallel evolution, but the cause is still uncertain.

    致謝………………………………………………………………………2 摘要………………………………………………………………………4 Abstract………………………………………………………………….5 緒論………………………………………………………………………7 研究材料與方法………………………………………………………..13 結果…………………………………………………………..................17 討論……………………………………………………………………..26 參考文獻……………………………………………………..................33 表………………………………………………………………………..39 圖………………………………………………………………………..43

    Braby, M. F., & Pierce, N. E. (2007). Systematics, biogeography and diversification of the Indo‐Australian genus Delias Hübner (Lepidoptera: Pieridae): phylogenetic evidence supports an ‘out‐of‐Australia’origin. Systematic Entomology, 32(1), 2-25.
    Chiba, H. (1988). A lepidoptrist’s view of panbiogeography. In Rivista di biologia-biology forum (Vol. 81, No. 4, p. 553). Cp 317, 06100 Perugia, ITALY: Univ Perugia.
    Chiba, H. (1995). A revision of the subfamily Coeliadinae of the world (Lepidoptera: Hesperiidae) (Doctoral dissertation).
    Chiba, H. (2009). A revision of the subfamily Coeliadinae (Lepidoptera: Hesperiidae). Bulletin of the Kitayushu Museum of Natural History, Series A (Natural History), 7, 1-102.
    Condamine F.L., Toussaint E.F.A., Cotton A.M., Genson G.S., Sperling F.A.H. & Kergoat G.J. (2013) Fine-scale biogeographical and temporal diversification processes of peacock swallowtails ( Papilio subgenus Achillides ) in the Indo-Australian Archipelago. Cladistics, 29, 88-111.
    Criscuolo, A. (2011). morePhyML: improving the phylogenetic tree space exploration with PhyML 3. Molecular phylogenetics and evolution, 61(3), 944-948.
    Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772.
    Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969-1973.
    Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.
    Emerson, S. B., Inger, R. F., & Iskandar, D. (2000). Molecular systematics and biogeography of the fanged frogs of Southeast Asia. Molecular Phylogenetics and Evolution, 16(1), 131-142.
    Evans, W. H. (1932) The identification of Indian butterflies. 2nd ed. Bombay: The Bombay natural history society. Pp. 320-321.
    Evans, W. H. (1949) A catalogue of the Hesperiidae from Europe, Asia and Australia in the British museum (natural history). London: The British Museum. Pp. 73-77.
    Gorog, A. J., Sinaga, M. H., & Engstrom, M. D. (2004). Vicariance or dispersal? Historical biogeography of three Sunda shelf murine rodents (Maxomys surifer, Leopoldamys sabanus and Maxomys whiteheadi). Biological Journal of the Linnean Society, 81(1), 91-109.
    Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20(4), 353-431.
    Heled, J., & Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3), 570-580.
    Igarashi, S. (1992). New problems on the genus Choaspes (Lepidoptera, Hesperiidae). Butterflyies, 1(1), 20-25.
    Igarashi, S., & Fukuda, H. (1997). The life histories of Asian butterflies. Vol. I. Tokyo: Tokai University Press. pp. 513-519. pl. 274-280.
    Inger, R. F., & Voris, H. K. (2001). The biogeographical relations of the frogs and snakes of Sundaland. Journal of Biogeography, 28(7), 863-891.
    de Jong, R., & Treadaway, C. G. (2007). Hesperiidae of the Philippine Islands. Butterflies of the World. Supplement 15, pp. 13-15.
    Kodandaramaiah, U. (2009). Eyespot evolution: phylogenetic insights from Junonia and related butterfly genera (Nymphalidae: Junoniini). Evolution and Development, 11(5), 489-497.
    Lohman, D. J., de Bruyn, M., Page, T., von Rintelen, K., Hall, R., Ng, P. K.L., Shih, H. T., Carvalho, G. R. & von Rintelen, T. (2011). Biogeography of the Indo-Australian Archipelago. Annual Review of Ecology, Evolution, and Systematics, 42, 205-226.
    Maddison, D. R., & Maddison, W. P. (2000). MacClade 4: Analysis of phylogeny and character evolution. Version 4.0. Sinauer Associates, Sunderland, Massachusetts.
    Müller, C.J., & Beheregaray, L.B. (2010). Palaeo island-affinities revisited– Biogeography and systematics of the Indo-Pacific genus Cethosia Fabricius (Lepidoptera: Nymphalidae). Molecular Phylogenetics and Evolution, 57, 314–326.
    Müller, C. J., Matos‐Maraví, P. F., & Beheregaray, L. B. (2013). Delving into Delias Hübner (Lepidoptera: Pieridae): fine‐scale biogeography, phylogenetics and systematics of the world's largest butterfly genus. Journal of Biogeography, 40(5), 881-893.
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858.
    Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253-1256.
    Ree, R. H., Moore, B. R., Webb, C. O., & Donoghue, M. J. (2005). A likelihood framework for inferring the evolution of geographic range on phylogenetic trees. Evolution, 59(11), 2299-2311.
    Ree, R. H., & Smith, S. A. (2008). Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57(1), 4-14.
    Scoble, M. J. The Lepidoptera. Form, function and diversity. Oxford University Press. pp.79-82. pp. 123-124 (1992).
    Sheldon, F. H., Oliveros, C. H., Taylor, S. S., McKay, B., Lim, H. C., Rahman, M. A., Mays, H., & Moyle, R. G. (2012). Molecular phylogeny and insular biogeography of the lowland tailorbirds of Southeast Asia (Cisticolidae: Orthotomus). Molecular Phylogenetics and Evolution, 65(1), 54-63.
    Sirichamorn, Y., Thomas, D. C., Adema, F. A., & Welzen, P. C. (2014). Historical biogeography of Aganope, Brachypterum and Derris (Fabaceae, tribe Millettieae): insights into the origins of Palaeotropical intercontinental disjunctions and general biogeographical patterns in Southeast Asia. Journal of Biogeography, 41(5), 882-893.
    Stelbrink, B., Albrecht, C., Hall, R., & von Rintelen, T. (2012). The biogeography of Sulawesi revisited: is there evidence for a vicariant origin of taxa on Wallace's “anomalous island”?. Evolution, 66(7), 2252-2271.
    Swofford, D. L. (2003). PAUP*: phylogenetic analysis using parsimony, version 4.0 b10.
    Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
    Tsukiyama, H. (1992). Genus Choaspes Moore, a review (Lepidoptera: Hesperiidae) -with illustration of all taxa and new information up to 1991-. Butterflyies, 1(2), 26-38.
    Wallace, A. R. (1863). On the physical geography of the Malay Archipelago. Journal of the Royal Geographical Society of London, 217-234.
    Warren, A. D., Ogawa, J. R., & Brower, A. V. (2009). Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Systematic Entomology, 34(3), 467-523.
    Yu, Y., Harris, A. J., & He, X. J. (2010). S-DIVA (statistical dispersal-vicariance analysis): a tool for inferring biogeographic histories. Molecular Phylogenetics and Evolution , 56(2):848-850.
    Yu, Y., Harris, A. J., & He, X. J. (2012). RASP (Reconstruct Ancestral State in Phylogenies) 2.1b. Available at http://mnh.scu.edu.cn/soft/blog/RASP

    無法下載圖示 本全文未授權公開
    QR CODE