簡易檢索 / 詳目顯示

研究生: 廖伯霖
Liao, Bo-Lin
論文名稱: 電動車之多電源系統建模與最佳化能量管理暨模式切換時機效益評估
An Optimal Energy Management with Effect of Mode-Switch Timing for a Multi Energy Source System of Electric Vehicles
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 85
中文關鍵詞: 鋰電池超級電容器燃料電池系統建模最佳化能量管理
英文關鍵詞: Lithium batteries, super capacitors, fuel cells, system modeling, Optimized, energy management
論文種類: 學術論文
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對電動車之多電源系統建模與最佳化能量管理暨模式切換時機效益評估進行研究。為提升電動車之行駛距離,本研究首先透過Matlab / Simulink軟體建立一可用於電動車之多電源系統動態模型,本系統包含行車型態、駕駛人模式、驅動馬達、傳動系統、縱向整車動態、燃料電池、超級電容器及鋰電池之八大次系統動態模型。並且將各動態模型聯結為一整車動態模型。本系統操作模式可分為純電動模式(EV)、混合模式(Hybrid)、延距模式(RE)及超級電容輔助模式(SC-Power Assist)之四大模式,接著在車輛馬達驅動與回充時,透過全域搜尋法則(Global Search Algorithm) 設定目標函數(Cost Function)與系統限制 (Constaints),進行多層For迴圈搜尋最佳參數,並分析出最佳能量管理參數多維表與最佳操作模式切換時機點,最後將此組參數整合至控制策略之模塊中,便可判別操作模式之切換時機,進而達成多電源系統最佳效能之目標。結果顯示本研究將最佳能量管理參數多維表及最佳操作模式切換時機點之導入控制策略,可成功提升整車性能,導入最佳化能量管理參數,行駛距離可改善7.81 %;導入最佳化能量管理參數與操作模式切換點,行駛距離可改善10.37 %。

    This paper changeover timing benefit assessment study as much power for the electric vehicle system modeling and optimization of energy management cum mode. To enhance the travel distance of the electric vehicle, the present study first established through Matlab / Simulink software can be used for an electric vehicle as much power system dynamic model, this system includes traffic patterns, driver mode, the drive motor, transmission, longitudinal vehicle dynamics , eight times the system dynamic model of the fuel cells, super capacitors and lithium batteries. And each link is a dynamic model of the vehicle dynamics model. The mode of operation can be divided into pure electric mode (EV), hybrid mode (Hybrid), extended distance mode (RE) and super capacitor auxiliary mode (SC-Power Assist) mode of four, followed by motor vehicle drivers and backfilled When, through its wholly-domain discovery rule (Global Search Algorithm) set a target function (Cost Function) and system limits (Constaints), multilayer For loop search for the best parameters, and analyze multidimensional optimal energy management parameter table with the best mode of operation changeover timing point, the last set of parameters to this integrated control strategy of the module, you can determine the timing of the operation mode of the switch, and then reached the target the best performance of multiple power systems. The results of this study will show optimal energy management parameters multidimensional table and best operation mode switching timing point of import control strategy can successfully increase vehicle performance, import optimize energy management parameters, the travel distance can be improved 7.81%; introducing best of energy management parameters and operation mode switching point, the travel distance can be improved 10.37%.

    摘 要.................i ABSTRACT..............ii 誌 謝.................iv 目錄....................v 表目錄.................vii 圖目錄.................viii 第一章 緒論................1 1.1前言.....................1 1.2研究動機...................2 1.3研究目的....................3 1.4研究方法....................4 1.5論文架構....................6 1.6文獻回顧.....................7 第二章 系統架構與動態模型建立.....12 2.1系統架構.....................12 2.2鋰電池組動態模型..............15 2.3質子交換膜燃料電池動態模型......17 2.4超級電容器組動態模型............18 2.5驅動馬達模型....................20 2.6傳動系統與縱向車輛動態模型........21 2.7駕駛者模式與行車型態模型..........23 2.8系統動態模型之整合................25 第三章 操作模式與能量管理策略.........27 3.1操作模式介紹........................27 3.2基礎規則庫管理策略..................30 3.3整車能量分配最佳化....................35 3.4整車模式切換最佳化......................39 第四章 模擬結果與討論......................41 4.1系統元件基本性能圖......................41 4.3行車型態測試性能曲線分析..................45 4.4鋰電池/超級電容並聯之性能曲線分析...........56 4.5鋰電池/超級電容/燃料電池並聯之性能曲線分析....65 第五章 結論.........................82 5.1 結論 ..........................82 參考文獻 ..........................83

    [1] 宋德洤 黃永慧,“電動車發展趨勢下機電整合與關鍵零組件商機與產 業布局策略”,新竹縣:財團法人工業技術研究院產業經濟與趨勢研究中心,2003。
    [2] Michael A. Roscher, Dirk Uwe Sauer, “Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries,"Journal of Power Sources, Vol.196, July 7, pp. 331-336 , 2010.
    [3] Shalini Rodrigues, N. Munichandraiah, A.K. Shukla, “A review of state-of-charge indication of batteries by means of a.c. impedance measurements,"Journal of Power Sources, Vol.87, August 4, pp. 12-20, 1999.
    [4] Andreas Jossen, “Fundamentals of battery dynamics,"Journal of Power Sources, Vol.154, December 1, pp. 530-538 , 2005.
    [5] F. Huet, “A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries,"Journal of Power Sources, Vol.70, May 19, pp. 59-69 , 1998.
    [6] A.A. Pesaran and M. Keyser,“Thermal Characteristics of Selected EV and HEV Batteries,”Annual Battery Conference, Long Beach, California, January 9-12, 2001.
    [7] J. Gomez, R. Nelson, E.E. Kalu, M.H. Weatherspoon, J.P. Zheng, “Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and state of charge effects,”Journal of Power and Energy, vol.196, January 15, pp. 4826-4831 , 2011.
    [8] P. Suresh, A.K Shukla, N. Munichandriah, “Temperature dependence studies of a.c. impedance of lithium-ion cells,” Journal of Applied Electrochemistry, Vol. 32, February 19, pp. 267-273 , 2002.
    [9] D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, D.U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental inverstigation,” Journal of Power Sources, vol.196, June 15, pp. 5334-5341 , 2011.
    [10] Williford R, Viswanathan V, Zhang J-G, “Effects of entropy changes in anodes and cathodes on the thermal behavior of lithium ion batteries,” Journal of Power Sources, Vol.189, April 1, pp. 101–107 , 2009.
    [11] Viswanathan V, Choi D, Wang D, Xu W, Towne S, Williford R, et al. “Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management,” Journal of Power Sources, Vol.195, June 1, pp. 3720–3729 , 2010.
    [12] Onda K, Kameyama H, Hanamoto T, Ito K, “Experimental study on heat
    generation behavior of small lithium-ion secondary batteries,” Journal of The Electrochemical Society, Vol.150, January 31, pp. A285–A291 , 2003.
    [13] Onda K, Ohshima T, Nakayama M, Fukuda K, Araki T. “Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles,” Journal of Power Sources, Vol.158, July 14, pp. 535–542 , 2006.
    [14] Hong J-S, Maleki H, Al Hallaj S, Redey L, Selman J, “Electrochemical calorimetric studies of lithium-ion cells, ” Journal of The Electrochemical Society, Vol.150, November 7, pp. 1489-1501 , 1997.
    [15] E. Barsoukov, J. R. Macdonald, Impedance Spectroscopy Theory, Experiment, and Application, Second Edition, John Wiley & Sons, 2005.
    [16] Seongjun Lee, Jonghoon Kim, Jaemoon Lee, B.H. Cho, “State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge,” Journal of Power Sources, vol.185, December 1, pp. 1367-1373 , 2008.
    [17] Nguyen Truong Thinh, Nguyen Ngoc Phuong, Tuong Phuoc Tho, “ac impedance based state of charge dynamic modeling of a LiFe4 battery for hybrid electric vehicle applications,” Journal of Engineering Technology and Education, The 2012 International Conference on Green Technology and Sustainable Development.
    [18] Liye Wang, Lifang Wang, Chenglin Liao, “Research on improved EKF algorithm applied on estimate EV battery SOC,” IEEE, Power and Energy Engineering Conference (APPEEC), pp. 1-4 , 2010.
    [19] Min Chen, Rincon-Mora,“Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE, Transactions on Energy Conversion, Vol.21, June 5, pp. 504-511 , 2006.
    [20] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M.Arakawa, “A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte,” Journal of Power Sources, Vol.74, August 1, pp. 219-227 , 1998.
    [21] C. R. Pals and J. Newman, “Thermal Modeling of the Lithium Polymer Battery: Temperature Profiles in a Cell Stack,” Journal of The Electrochemical Society, Vol.142, May 31, pp. 3282-3288 , 1995.
    [22] Kim, M.-J. and H. Peng,“Power management and design optimization of fuel cell/battery hybrid vehicles .”Journal of power sources 165(2): 819-832.
    [23] Hung, Y.-H. and C.-H. Wu,“An integrated optimization approach for a hybrid energy system in electric vehicles.”Applied Energy 98: 479-490, 2012.
    [24] Hung, Y.-H. and C.-H. Wu,“A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs.”Applied Energy 139: 260-271,2015.
    [25] S.G.Wirasingha and A. Emadi, “Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles.”Vehicular Technology, IEEE Transactions on, vol. 60,pp.111-122, 2011.
    [26] Delprat, S., et al.“Optimal control of a parallel powertrain: from global optimization to real time control strategy.”Vehicular Technology Conference, VTC Spring 2002. IEEE 55th, IEEE, 2002.
    [27] S.G.Wirasingha and A. Emadi, “Classification and Review of Control Strategies for Plug-in Hybrid Electric Vehicles.”Vehicular Technology, IEEE Transactions on, vol. 60,pp.111-122, 2011.

    無法下載圖示 本全文未授權公開
    QR CODE