研究生: |
郭巾萍 Guo, Jin-Ping |
---|---|
論文名稱: |
電鑄鑽石輪刀之線上旋轉電解銳化研究 Study of an in-situ rotating electrolytic dressing for an electroplated diamond dicing blade |
指導教授: |
陳順同
Chen, Shun-Tong |
口試委員: | 趙崇禮 蔡俊毅 蘇崇彥 陳順同 |
口試日期: | 2021/08/12 |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 電解銳化 、電解薄化 、輪刀再生 、屑袋 |
英文關鍵詞: | electrolytic dressing, electrolytic thinning, wheel regeneration, chip pocket |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202101258 |
論文種類: | 學術論文 |
相關次數: | 點閱:88 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種「線上旋轉式電解銳化」的技術,用於對電鑄鑽石輪刀進行銳化及薄化研究。目前,半導體業大多使用電鑄鑽石輪刀進行晶粒分割(本文所稱晶粒,係指輪刀對矽晶圓切割後的微小晶片(chip)),由於結合鑽石磨粒的鎳具強韌性,且鑽石的高硬度與絕緣性,使得輪刀鈍化後,不易再被削銳,所以都直接丟棄。本研究設計一具有拘束電解液功能的電解槽,電解槽內具穩定流動的中性硝酸鈉電解液,填塞的輪刀透由高速主軸的緩速旋轉,浸入電解液中。藉由電解原理(反電鍍法),輪刀表面的鎳原子逐漸被均勻解離,填塞於屑袋中的磨屑便能順利脫離輪刀並裸露出新的鑽石磨粒,故輪刀能經300秒銳化,再度恢復研削力。輪刀電解銳化過程,鎳原子被逐顆移除,所以輪刀沒有機械式削銳的切削應力或熱應力,不會發生變形,能實現輪刀的銳化或輪刀薄化,獲得更窄的晶粒分割道。銳化過程,輪刀未與高速主軸分離,故銳化後的輪刀,可直接移位作晶粒分割,省卻再校正的繁瑣程序。實驗結果顯示,銳化後的輪刀可再增加5.5 m的研削長度,而位移平台電流回饋顯示,其研削阻抗由0.82 A降至0.21 A,並發現分割後的晶粒,其邊緣崩落量很少,證實「線上旋轉式電解銳化」技術著實能快速實現輪刀再生。在另一方面,本研究亦設計與輪刀互為平行的雙陰極板,透由兩側的電解電場作用,進行輪刀薄化。實驗結果顯示,原刃厚55 μm的電鑄鑽石輪刀,薄化至35 μm的刃厚,耗時僅約300秒,切割道槽寬由66 μm縮減至45 μm,延續的研削長度為4.5 m,說明輪刀薄化不但可延長輪刀壽命,更可降低研削阻抗及窄化切割道,並分割出更多的晶粒數。此項開發的「線上旋轉式電解銳化」技術經實驗證實能讓輪刀快速再生,且符合環保,具市場競爭力,期望未來能為半導體產業所用。
An "in-situ rotary electrolytic dressing technology" for sharpening and thinning electroformed diamond wheels is proposed in this study. At present, die separation is usually carried out by using electroformed diamond wheel by the semiconductor maker. (This "die" refers to the tiny chip after the silicon wafer is divided by the diamond wheel in this study). Due to the strong toughness of nickel combined with diamond abrasive grains, and the high hardness and insulation of diamond, the electroformed diamond wheel is not easy to be sharpened after dulling, it is discarded directly. An electrolytic tank, in which can stabilize the flow of neutral sodium nitrate electrolyte and prevent splashing, is designed and employed in this study. The clogged electroformed diamond wheel rotates slowly on the high-speed spindle and immersed into the electrolyte. By applying the principle of electrolysis (reverse electroplating), the nickel atoms on the surface of the diamond wheel are gradually and uniformly dissociated, and the grinding dust packed in the chip pockets can escape smoothly from the wheel and expose new diamond abrasive grains. The diamond wheel can restore the grinding force again after 300 seconds of electrolysis time. During the diamond wheel is electrolyzed, and nickel atoms are removed one by one. Therefore, there is no cutting stress, thermal stress and deformation on the wheel. In addition, the diamond wheel has not been unloaded from the high-speed spindle during the dressing process, hence, the dressed wheel can directly shift for next die separation, which saves the tedious procedure of re-calibration. Experimental results show that the dressed wheel can extend the tool life by increasing the grinding length of 5.5 m. The current feedback of the translation stage shows that the grinding resistance is reduced from 0.82 A to 0.21 A, and the amounts of edge avalanche of the divided dies are very small. It proves that the "in-situ rotary electrolytic dressing technology" can quickly realize the wheel regeneration. On the other hand, a dual-cathode plate parallel to the diamond wheel, which can thin the wheel width by the electrolytic electric field on both sides, is also designed in this study. Experimental results show that the original electroformed diamond wheel can be thinned from a thickness of 55 μm to 35 μm. It takes only about 300 seconds. The width of the cutting lane can be reduced from 66 μm to 45 μm and the extended grinding length is 4.5 m. This shows that the thinning of the wheel can not only reduce the grinding resistance and extend the lifetime, but also narrow the width of cutting path resulting in obtaining more dies. The developed "in-situ rotary electrolytic dressing technology" has been experimentally proven to enable the diamond wheel to regenerate quickly, is environmentally friendly, and has market competitiveness. It is expected to be used by the semiconductor industry in the future.
1. IDC, 2019. Asia/Pacific (Excluding Japan) 5G Subscriber Forecast, 2019-2023, https://www.idc.com/
2. Dornfeld, D., Min, S., Takeuchi, Y., 2006. Recent Advances in Mechanical Micromachining, CIRP Annals 55, 745-768.
3. Ohmori, H., Katahira, K., Naruse, T., Uehara, Y., Nakao, A., Mizutani, M., 2007. Microscopic Grinding Effects on Fabrication of Ultra-fine Micro Tools, CIRP Annals 56, 569-572.
4. DIGITIMES, 2018. Global foundry industry to grow at 6% CAGR in next 5 years, says Digitimes Research, https://www.digitimes.com/
5. Chang, P.C., Tsou, N.T., Yuan, B.J.C., Huang, C.C., 2002. Development trends in Taiwan's opto-electronics industry, Technovation 22, 161-173.
6. Pham, D.T., Dimov, S.S., Bigot, S., Ivanov, A., Popov, K., 2004. Micro-EDM—recent developments and research issues, Journal of Materials Processing Technology 149, 50-57.
7. Chen, S.T., Yang, H.Y., Du, C.W., 2009. Study of an ultrafine w-EDM technique, Journal of Micromechanics and Micro engineering 19, 115033.
8. Piotrowska, I., Brandt, C., Karimi, H.R., Maass, P., 2009. Mathematical model of micro turning process, The International Journal of Advanced Manufacturing Technology 45, 33-40.
9. Lee, P.H., Nam, J.S., Li, C., Lee, S.W., 2012. An experimental study on micro-grinding process with nanofluid minimum quantity lubrication (MQL), International Journal of Precision Engineering and Manufacturing 13, 331-338.
10. Kanagaraj, J., Senthilvelan, T., Panda, R.C., Kavitha, S., 2015. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review, Journal of Cleaner Production 89, 1-17.
11. Rajurkar, K.P., Zhu, D., McGeough, J.A., Kozak, J., De Silva, A., 1999. New Developments in Electro-Chemical Machining, CIRP Annals 78, 567-579.
12. Shibuya, N., Ito, Y., Natsu, W., 2012. Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution. Journal of Precision Engineering and Manufacturing 13, 2075-2078.
13. Choi, S.H., Kim, B.H., Shin, H.S., Chu, C.N., 2013. Analysis of the electrochemical behaviors of WC-Co alloy for micro ECM. Journal of Materials Processing Technology 213, 621-630.
14. 楊啟鑫,2016,由終端產品發展看扇出型封裝技術發展趨勢,中華民國經濟部,https://www.moea.gov.tw/
15. 楊啟榮,2018,微機電系統原理與應用課程講義,國立臺灣師範大學機電工程學系。
16. Chen, S.T., Lin, S.J., 2011. Study of an on-line precision microgroove generating process on silicon wafer using a developed ultra-thin diamond wheel-tool, Diamond & Related Materials 20, 339-342.
17. Chen, S.T., Lai, Y.C., 2012. Development of micro co-axial diamond wheel-tool array using a hybrid process of electrochemical co-deposition and RWEDM technique, Journal of Materials Processing Technology 212, 2305-2314.
18. 陳順同,2016,超精密加工課程講義,國立臺灣師範大學機電工程學系。
19. Liu, J.H., Pei, Z.J., Fisher, G.R., 2007. ELID grinding of silicon wafers: A literature review, International Journal of Machine Tools and Manufacture 47, 529-536.
20. Wang, Y., Zhou, X., Hu, D., 2006. An Experimental Investigation of Dry-Electrical Discharge Assisted Truing and Dressing of Metal Bonded Diamond Wheel. International Journal of Machine Tools and Manufacture 46, 333-342.
21. Chen, S.T., Chang, C.H., Study on thinning of a boron-doped polycrystalline diamond wheel-tool by micro rotary w-EDM approach, Applied Mechanics and Materials 217-219, 2167-2170
22. 行政院環境保護署,2020,國際減量與抵換機制發展趨勢,https://www.epa.gov.tw/
23. Disco,切割機,https://www.disco.co.jp/
24. 林啟明,2020,金屬材料課程講義,國立中興大學材料科學與工程學系。
25. 田福助,1987,電化學理論與應用,高立圖書有限公司,500-502。
26. Xu, Z.Y., Wang, Y.D., 2021. Electrochemical machining of complex components of aero-engines: Developments, trends, and technological advances, Chinese Journal of Aeronautics 34, 28-53.
27. 呂璞石,黃振賢,1989,金屬材料,新文京開發出版股份有限公司。
28. Klocke, F., Zeis, M., Klink, A., Veselovac, D., 2012. Technological and Economical Comparison of Roughing Strategies via Milling, EDM and ECM for Titanium- and Nickel-based Blisks, Procedia CIRP 2, 98-101.
29. Merklein, M., Hagenah, H., 2012. Technological and Economical Capabilities of Manufacturing Titanium- and Nickel-Based Alloys via Electrochemical Machining (ECM), Key Engineering Materials 504-506, 1237-1242.
30. 褚晴暉,2012,結構件為什麼會斷裂,科學發展 437,54-57。
31. Bergs, T., Rommes, B., Kohls, E., Meyer, H., Klink, A., Heidemanns, L.,
Harst, S., 2020. Experimental Investigation concerning the Influence of Electrochemical Machining on Process Chain induced Residual Stress States, Procedia CIRP 95, 726-730.
32. McGeough, J.A., 1974. Principles of electrochemical machining, Chapman and Hall, 1-10.
33. Des, B., Frank, W.C., 1991. Applications of Faraday’s Laws of Electrolysis in Metal Finishing. The International Journal of Surface Engineering and Coatings 69, 158-162.
34. 吳浩青,李永舫,2001,電化學動力學,三民書局,45-46。
35. 高鵬,2013,電化學基礎教程,化學工業出版社。
36. 尤光先,電鍍工程學,2009,徐氏基金會。
37. Yu, D., Mu, S., Liu, L., Wang, W., 2015. Preparation of electroless silver plating on aramid fiber with good conductivity and adhesion strength, Colloids and Surfaces A: Physicochemical and Engineering Aspects 483, 53-59.
38. Vaezi, M.R., Sadrnezhaad, S.K., Nikzad, L., 2008. Electrodeposition of Ni-SiC nano-composite coatings and evaluation of wear and corrosion resistance and electroplating characteristics, Colloids and Surfaces A: Physicochemical and Engineering Aspects 315, 176-182.
39. Cuthbertson, J.W., 2017. Lead-Tin Alloy Plating for Solder ability, The International Journal of Surface Engineering and Coatings 26, 99-106.
40. McGeough, J.A., Leu, M.C., Rajurkar, K.P. De Silva, A.K.M., Liu, Q., Electroforming Process and Application to Micro/Macro Manufacturing, 2001. CIRP Annals 50, 499-514.
41. Fransaer, J., Celis, J.P., Roos, J., 1993. Mechanism of composite electroplating, The International Journal of Metal Finishing 91, 97-100.
42. Huang, C.A., Yang, S.W., Shen, C.H., Cheng, K.C., Wang, H., Lai , P.L., 2019. Fabrication and evaluation of electroplated Ni-diamond and Ni-B-diamond milling tools with a high density of diamond particles, The International Journal of Advanced Manufacturing Technology 104, 2981-2989.
43. Guglielmi, N., 1972. Kinetics of the Deposition of Inert Particles From Electrolytic Baths, Journal of the Electrochemical Society 119, 1009-1012.
44. 台中精機,CNC立式加工中心機,http://www.or.com.tw/。
45. 慶鴻機電工業股份有限公司,2008,CNC線切割放電加工機保養手冊。
46. 漢磊股份有限公司,光學顯微鏡,http://www.aixon.com.tw/。
47. JEOL,掃描式電子顯微鏡,http://www.jeol.com/Default.aspx?tabid=36。
48. OLYMPUS,3D雷射共焦顯微鏡,http://www.olympus-ims.com
49. NAKANISHI, 2016, EM20-S6000, pp.53.
50. NAKANISHI, 2016, E3000 SERIES, pp.46.
51. MISUMI,2015,FA工廠自動化用機械標準零件。
52. 祥儀企業,減速直流馬達,http://www.shayangye.com/
53. Disco,切割硬刀,https://www.disco.co.jp/
54. 田福助,1987,電化學理論與應用,高立圖書有限公司,508。
55. 第一化工,硝酸鈉粉末,http://www.firstchem.com.tw/
56. Moronuki, N., Liang, Y., Furukawa, Y., 1994. Experiments on the Effect of Material Properties on Microcutting Processes, Precision Engineering 16, 124-131.
57. CRYSTRAN, 2012. Silicon, https://www.crystran.co.uk/
58. 東洋技術有限公司,2016,紫外線切割膠帶,https://www.toyo-adtec.com.tw/
59. 日商駿河精機股份有限公司,BSS26-100C45,https://tw.surugaseiki.com/
60. Areotech, AVL125 Series Vertical Translation Stage, 478-481.
61. 吳育儒,2012,含硼聚晶鑽石輪刀開發與繞射階梯光柵模仁製作研究,國立臺灣師範大學機電工程學系研究所,碩士論文。
62. 胡竣泓,2019,具線上放電銳化技術之晶粒分割系統開發與矽晶圓基板晶粒分割研究,國立臺灣師範大學機電工程學研究所,碩士論文。
63. Aerotech, NT130XY Series Stages, ANT130L Series Stages,
https://www.aerotech.com/
64. 御子柴佑恭,1967,超硬合金の電解加工法,日立評論 49,319-324。
65. Disco, Dicing (Kiru) - Blade Dicing, https://www.dicing-grinding.com/